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Abstract

The Algorithms for Lattice Fermions package provides a general code for the finite-temperature
and projective auxiliary-field quantum Monte Carlo algorithm. The code is engineered

to be able to simulate any model that can be written in terms of sums of single-body
operators, of squares of single-body operators and single-body operators coupled to a
bosonic field with given dynamics. The package includes five pre-defined model classes:
SU(N) Kondo, SU(N) Hubbard, SU(N) t-V and SU(N) models with long range Coulomb
repulsion on honeycomb, square and N-leg lattices, as well as Z, unconstrained lattice
gauge theories coupled to fermionic and Z, matter. An implementation of the stochastic
Maximum Entropy method is also provided. One can download the code from GitHub at
https://github.com/ALF-QMC/ALF /tree/master and sign in to file issues.
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1 Introduction

1.1 Motivation

The aim of the ALF project is to provide a general formulation of the auxiliary-field QMC
method that enables one to promptly play with different model Hamiltonians at minimal pro-
gramming cost. The package also comes with a number of predefined Hamiltonians aimed at
producing benchmark results.

The auxiliary-field quantum Monte Carlo (QMC) approach is the algorithm of choice to
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simulate thermodynamic properties of a variety of correlated electron systems in the solid state
and beyond [ 1-6]. Apart from the physics of the canonical Hubbard model [7,8], the topics one
can investigate in detail include correlation effects in the bulk and on surfaces of topological
insulators [9-12], quantum phase transitions between Dirac fermions and insulators [13-20],
deconfined quantum critical points [18,21-24], constrained and unconstrained lattice gauge
theories [21,25-30], heavy fermion systems [31-36], nematic [37,38] and magnetic [39,40]
quantum phase transitions in metals, antiferromagnetism in metals [41], superconductivity
in spin-orbit split and in topological flat bands [42-44], SU(N) symmetric models [45-50],
long-ranged Coulomb interactions in graphene systems [51-55], cold atomic gases [56], low
energy nuclear physics [57] that may require formulations in the canonical ensemble [58,59],
entanglement entropies and spectra [60-66], electron-phonon systems [67-69], Landau level
regularization of continuum theories [70,71], Yukawa SYK models [ 72] and even spin systems
[73] among others. This ever-growing list of topics is based on algorithmic progress and on
recent symmetry-related insights [74-77] that lead to formulations free of the negative sign
problem for a number of model systems with very rich phase diagrams.

Auxiliary-field methods can be formulated in a number of very different ways. The fields
define the configuration space C. They can stem from the Hubbard-Stratonovich (HS) [78]
transformation required to decouple the many-body interacting term into a sum of non-interacting
problems, or they can correspond to bosonic modes with predefined dynamics such as phonons
or gauge fields. In all cases, the result is that the grand-canonical partition function takes the

form X
Z= Tr(e_/m) = Ze‘s(c), €]
C

where 3 corresponds to the inverse temperature and S is the action of non-interacting fermions
subject to a space-time fluctuating auxiliary field. The high-dimensional integration over the
fields is carried out stochastically. In this formulation of many-body quantum systems, there is
no reason for the action to be a real number. Thereby e 5(°) cannot be interpreted as a weight.
To circumvent this problem one can adopt re-weighting schemes and sample |e=5()|. This
invariably leads to the so-called negative sign problem, with the associated exponential compu-
tational scaling in system size and inverse temperature [79]. The sign problem is formulation
dependent and, as mentioned above, there has been tremendous progress at identifying an
increasing number of models not affected by the negative sign problem which cover a rich do-
main of collective emergent phenomena. For continuous fields, the stochastic integrations can
be carried out with Langevin dynamics or hybrid methods [80]. However, for many problems
one can get away with discrete fields [81]. In this case, Monte Carlo importance sampling
will often be put to use [82]. We note that due to the non-locality of the fermion determinant
(see below), cluster updates, such as in the loop or stochastic series expansion algorithms for
quantum spin systems [83-85], are hard to formulate for this class of problems. The search
for efficient updating schemes that quickly wander through the configuration space defines
ongoing challenges.

Formulations differ not only in the choice of the fields, continuous or discrete, and sam-
pling strategy, but also by the formulation of the action itself. For a given field configuration,
integrating out fermionic degrees of freedom generically leads to a fermionic determinant of
dimension SN where N is the volume of the system. Working with this determinant leads to
the Hirsch-Fye approach [86] and the computational effort scales' as O (BN)>. The Hirsch-Fye
algorithm is the method of choice for impurity problems, but has in general been outperformed
by a class of so-called continuous-time quantum Monte Carlo approaches [87-89]. One key
advantage of continuous-time methods is being action based, allowing one to better handle
the retarded interactions obtained when integrating out fermion or boson baths. However,

'Here we implicitly assume the absence of negative sign problem.
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in high dimensions or at low temperatures, the cubic scaling originating from the fermionic
determinant is expensive. To circumvent this, the hybrid Monte-Carlo approach [5,90,91] ex-
presses the fermionic determinant in terms of a Gaussian integral thereby introducing a new
variable in the Monte Carlo integration. The resulting algorithm is the method of choice for
lattice gauge theories in 3+1 dimensions and has been used to provide ab initio estimates of
light hadron masses starting from quantum chromodynamics [92].

The approach we adopt lies between the above two extremes. We keep the fermionic deter-
minant, but formulate the problem so as to work only with N x N matrices. This Blankenbecler,
Scalapino, Sugar (BSS) algorithm scales linearly in imaginary time 3, but remains cubic in the
volume N. Furthermore, the algorithm can be formulated either in a projective manner [3,4],
adequate to obtain zero temperature properties in the canonical ensemble, or at finite temper-
atures, in the grand-canonical ensemble [2]. The formulations of the auxiliary-field approach
can be generalized to time dependent Hamiltonians. This allows for great flexibility and in
particular to use the projective algorithm as a variational approach [93]. In this documenta-
tion we summarize the essential aspects of the auxiliary-field QMC approach, and refer the
reader to Refs. [6,94] for complete reviews.

1.2 Definition of the Hamiltonian

The first and most fundamental part of the project is to define a general Hamiltonian which
can accommodate a large class of models. Our approach is to express the model as a sum of
one-body terms, a sum of two-body terms each written as a perfect square of a one body term,
as well as a one-body term coupled to a bosonic field with dynamics to be specified by the
user. Writing the interaction in terms of sums of perfect squares allows us to use generic forms
of discrete approximations to the HS transformation [95,96]. Symmetry considerations are
imperative to increase the speed of the code. We therefore include a color index reflecting an
underlying SU(N) color symmetry as well as a flavor index reflecting the fact that after the HS
transformation, the fermionic determinant is block diagonal in this index.

The class of solvable models includes Hamiltonians A that have the following general
form:

7:227:[’1""‘/}:\[‘/ +7:ZI+7:ZQ+7:ZO,I’ where (2)
Neol N Niim My .
Z DIPIP ISP 3)
=lo=1s=1 x,y k=1
ol Npg Niim 2 My )
Z Uk {Z Z [(Z xasvx(flS) Aycrs) + aks:|} = Z Ui (V(k)) s 4)
k=1 o=1s=1 x,y k=1
M; Neol N Niim M;
Z (Z Z Z Cxos )(cl;s) Ayos) Z (5)
o=1s=1 x,y k=1
R Q . ol Np Ndim 2
/HQ :ZU (1+Qk){ZZ|:(Z xosvx(f/S) yas)+&ks:|} . (6)
k=1 o=1s=1

The indices and symbols used above have the following meaning:

* The number of fermion flavors is set by Ny. After the HS transformation, the action will
be block diagonal in the flavor index.

* The number of fermion colors is set? by N,.,;. The Hamiltonian is invariant under SU(N,;)
rotations.

2Note that in the code N, ; = N_SUN.

col =
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* Ny is the total number of spacial vertices: Ngi = Nynit-cell Norbital, Where Nypic.cen iS the
number of unit cells of the underlying Bravais lattice and N ;. is the number of orbitals
per unit cell.

* The indices x and y label lattice sites where x,y =1, , Ngjp-
* Therefore, the matrices T**), V) and 1) are of dimension Ny;;, X Ny

* The number of interaction terms is labeled by M, and M;. M > 1 would allow for a
checkerboard decomposition.

. 6;', o5 18 a second-quantized operator that creates an electron in a Wannier state centered
around lattice site y, with color o, and flavor index s. The operators satisfy the anti-

commutation relations:
{66 028,00 } = 61y BiB0ar, and {2,060, } =0, %
* a;, is a complex number.

The bosonic part of the general Hamiltonian (2) is 7:[0, ; and has the following properties:

* 7, couples to a general one-body term and Q. to a two-body operator. We will work in
a basis where these operators are diagonal: Z|¢) = ¢rld), Qxl@) = rl@). ¢y is a real
number or an Ising variable. Hence Z; can correspond to the Pauli matrix &, or to the
position operator. The same applies for ¢y

* The dynamics of the bosonic fields is given by 7:[0,1. This term is not specified here;
it has to be specified by the user and becomes relevant when the Monte Carlo update
probability is computed in the code

Note that the matrices T*), V), 7% and 1) explicitly depend on the flavor index s but not

on the color index o. The color index o only appears in the second quantized operators such
that the Hamiltonian is manifestly SU(N,,;) symmetric. We also require the matrices T,

viks), 7% and 1% to be Hermitian. In the description of the code will drop the H, term
since it merely obscures the notation without adding any new aspects. This feature of the code
will be used in the spin-Peierls Hamiltonian example 9.6.

1.3 Outline and What is new

In order to use the program, a minimal understanding of the algorithm is necessary. Its code is
written in Fortran, according to the 2008 standard, and natively uses MPI (MPI 3.0 compliant
implementation needed) for parallel runs on supercomputing systems. In this documentation
we aim to present in enough detail both the algorithm and its implementation to allow the
user to confidently use and modify the program.

In Sec. 2, we summarize the steps required to formulate the many-body, imaginary-time
propagation in terms of a sum over HS and bosonic fields of one-body, imaginary-time propa-
gators. To simulate a model not already included in ALE, the user has to provide this one-body,
imaginary-time propagator for a given configuration of HS and bosonic fields. In this section
we also touch on how to compute observables and on how we deal with the negative sign
problem. Since version 2.0, ALF has a number of new updating schemes. The package comes
with the possibility to implement global updates in space and time or only in space; we pro-
vide parallel-tempering, Langevin dynamics, Hybrid Monte Carlo options, and it is possible to
implement symmetric Trotter decompositions. At the end of the section we comment on the
issue of stabilization for the finite temperature code.
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In Sec. 3, we describe the projective version of the algorithm, constructed to produce
ground state properties. One can very easily switch between projective and finite tempera-
ture codes, but a trial wave function must be provided for the projective algorithm.

One of the key challenges in Monte Carlo methods is to adequately evaluate the stochastic
error. In Sec. 4 we provide an explicit example of how to correctly estimate the error.

Section 5 is devoted to the data structures that are needed to implement the model, as
well as to the input and output file structure. The data structures include an Operator type
to optimally work with sparse Hermitian matrices, a Lattice type to define one- and two-
dimensional Bravais lattices, a generic Fields type for the auxiliary fields, two Observable
types to handle scalar observables (e.g., total energy) and equal-time or time-displaced two-
point correlation functions (e.g., spin-spin correlations) and finally a Wavefunction type to
define the trial wave function in the projective code. At the end of this section we comment
on the file structure.

In Sec. 6 we provide details on running the code using the shell. As an alternative the user
can download a separate project, pyALF that provides a convenient python interface as well
as Jupyter notebooks.

The package has a set of predefined structures that allow easy reuse of lattices, observables,
interactions and trial wave functions. Although convenient, this extra layer of abstraction
might render ALF harder to modify. To circumvent this we make available an implementation
of a plain vanilla Hubbard model on the square lattice (see Sec. 7) that shows explicitly how
to implement this basic model without making use of predefined structures. We believe that
this is a good starting point to modify a Hamiltonian from scratch, as exemplified in the pack-
age’s Tutorial. Yet another possible starting point is provided by the template Hamiltonian
Hamiltonian_ ##NAME##_smod.F90

Sec. 8 introduces the sets of predefined lattices, hopping matrices, interactions, observ-
ables and trial wave functions available. The goal here is to provide a library to facilitate
implementation of new Hamiltonians.

The package comes with a set of Hamiltonians, described in Sec. 9, which includes: (i)
SU(N) Hubbard models allowing pinning fields [13], (ii) SU(N) t-V models, (iii) SU(N) Kondo
lattice models, (iv) Models with long ranged coulomb interactions, (v) Generic Z, lattice gauge
theories coupled to Z, matter and fermions and (vi) models with spin-Peierls interactions.
These model classes are built on the predefined structures.

In Sec. 10 we describe how to use our implementation of the stochastic analytical contin-
uation [97,98] as well as the maximum entropy method [99,100]. These methods allow one
to obtain spectral functions from imaginary-time correlation functions measured in the QMC
simulations. One can switch between both methods by merely changing a parameter in the
input file.

Finally, in Sec. 11 we list a number of features being considered for future releases of the
ALF package.

2 Auxiliary Field Quantum Monte Carlo: finite temperature

We start this section by deriving the detailed form of the partition function and outlining
the computation of observables (Sec. 2.1.1 - 2.1.3). Next, we present a number of update
strategies, namely local updates, global updates, parallel tempering and Langevin dynamics
(Sec. 2.2). We then discuss the Trotter error, both for symmetric and asymmetric decomposi-
tions (Sec. 2.3) and, finally, we describe the measures we have implemented to make the code
numerically stable (Sec. 2.4).


https://github.com/ALF-QMC/pyALF/tree/master
https://github.com/ALF-QMC/ALF_Tutorial_and_Presentations/tree/master/Tutorial-ALF-dev/
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2.1 Formulation of the method

Our aim is to compute observables for the general Hamiltonian (2) in thermodynamic equilib-
rium as described by the grand-canonical ensemble. We show below how the grand-canonical
partition function can be rewritten as

Z="Tr (e_/”:[) = Z e 50 4 O(ATZ), (8)
C

and define the space of configurations C. Note that the chemical potential term is already
included in the definition of the one-body term %7, see Eq. (3), of the general Hamiltonian.
The essential ingredients of the auxiliary-field quantum Monte Carlo implementation in the
ALF package are the following:

* We discretize the imaginary time propagation: 3 = AT Lyue- Generically this intro-
duces a systematic Trotter error of O(A1)? [101]. We note that there has been consid-
erable effort at getting rid of the Trotter systematic error and to formulate a genuine
continuous-time BSS algorithm [102]. To date, efforts in this direction that are based
on a CT-AUX type formulation [103,104] face two issues. The first one is that they are
restricted to a class of models with Hubbard-type interactions

(A, —1)* = (A; — )%, 9

in order for the basic CT-AUX equation [105],

u. ., 2 _ 1 as(f;—1) : Y _
1+ X (n;—1)" = Eszzi:le with = cosh(a)—1 and K € R, (10)

to hold. The second issue is that it is hard to formulate a computationally efficient
algorithm. Given this situation, if eliminating the Trotter systematic error is required, it
turns out that extrapolating to small imaginary-time steps using the multi-grid method
[106-108] is a more efficient scheme.

There has also been progress in efficient continuous-time methods using techniques that
draw from the Stochastic Series Expansion [109] which can be combined with fermion
bagideas [110]. However, these techniques are even more restricted to a specific class of
Hamiltonians, those that can be expressed as sums of exponentiated fermionic bilinear
terms H = >, D, where

500 — —}/(i)ezf" aEQéJTéﬁH.c. (11)
Stabilization can also be costly depending on the parameters, particularly for large a
values [111].

* Having isolated the two-body term, we apply GaulR-Hermite quadrature [112] to the
continuous HS transform and obtain the discrete HS transformation [95,96]:

(ATAR _ % D> r0e’AWAL o((ar)t), (12)

[=+1,42

where the fields 1 and y take the values:

yED=1+v6/3, nE1)==%2(3-V6),
y(#2)=1-v6/3, n(*2)==%2(3+V6).

(13)
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Since the Trotter error is already of order (A7?) per time slice, this transformation is
next to exact. One can relate the expectation value of the field n(1) to the operator A by
noting that:

1 Z Y(Z)eM”)(Z)A( 77(1) ):eATMZA-l-O((ATA)B) and

4 [=%1,42 2VATA

1 A D)?—-2 22

2 D e A”n(m(—(”ii)ﬂ ):eATMZAZ-i-O((AT)L)Z)- (14)
[=+1,+2

* 7, in Eq. (5) can stand for a variety of operators, such as the Pauli matrix &, — in
which case the Ising spins take the values s, = +1 — or the position operator — such
that Z|¢) = ¢|¢), with ¢ a real number.

* From the above it follows that the Monte Carlo configuration space C is given by the
combined spaces of bosonic configurations and of HS discrete field configurations:

C={¢irljowithi=1---M;, j=1--My, T=1"Lyyoer} - (15)

Here, the HS fields take the values [; . = +2,+1 and ¢; ; may, for instance, be a contin-
uous real field or, if Z, = &, be restricted to 1.

2.1.1 The partition function

In this section and in what follows, we will set J, = 0. An explicit example in which this
feature is used can be found in Sec. 9.6 where we use to ALF-library to simulate the spin-
Peierls Heisenberg Hamiltonian. With the above, the partition function of the model (2) can
be written as follows.

z=Tr(ePH)
My ) M; My Lvotter
—Tr [e—mﬁo,, l_[ e~ ATU(V®) l_[ o~ AT M l_[ e—mf(k)] +O(AT?)
k=1 k=1 k=1
MV LTrotter
=S ([T e Jemstens
C \k=1 =1
Lisoter [ My oM oMy )
Trp { l_[ |:l_[ e —AtUeny, V® l_[ e—ATSk,rI(k) l_[ e_ATT(k):|} + O(ATZ) . (16)
=1 Lk=1 k=1 k=1

In the above, the trace Tr runs over the bosonic and fermionic degrees of freedom, and Try
only over the fermionic Fock space. S, ({si’f}) is the action corresponding to the bosonic
Hamiltonian, and is only dependent on the bosonic fields so that it can be pulled out of the
fermionic trace. We have adopted the shorthand notation 1 . = n(ly ;) and v . = y(Ix ). At
this point, and since for a given configuration C we are dealing with a free propagation, we
can integrate out the fermions to obtain a determinant:

10
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LTrotter N MI . MT .
| | | | —ArUknk,TV(k)l |e—msk£1<’<)| |e—A7T(k) _

=1 Lk=1 k=1 k=1
N,
My L col
N, V LTrotter
| ﬂl 2 v/ ATUka ke
ek=1 7=1 X
s=1
(17)
Np Ltrotter My } M; ) My ) Neol
| | det| 1+ | | | Ie —AtUgny, V) | | e_ATSk,‘rI( $) | | e_ATT( s) ’
s=1 =1 k=1 k=1 k=1

where the matrices T(ks), V(ks), and 1) define the Hamiltonian [Eq. (2) - (5)]. All in all, the
partition function is given by:

N My Lryotter

7 = Z =So({six}) (ﬁ Lif_oft[ef T) eles;l kgl Tgl ATk ks e X ﬁ |:det (]l

k=1 7=1 s=1
LTrotter M Ncol
+ l_[ l_[ e\/T‘L'Uk"]k vk l_[ —ATS, Tl(k s) l_[ ATT(kS)):| + O(ATZ)
=1 k=1 k=1
= Z eSO L 0(a1?). (18)
Cc

In the above, one notices that the weight factorizes in the flavor index. The color index raises
the determinant to the power N,,,. This corresponds to an explicit SU(N,,;) symmetry for each
configuration. This symmetry is manifest in the fact that the single particle Green functions
are color independent, again for each given configuration C.

2.1.2 Observables

In the auxiliary-field QMC approach, the single-particle Green function plays a crucial role.
It determines the Monte Carlo dynamics and is used to compute observables. Consider the
observable:

)

eSO

and {(O)) . denotes the observed value of O for a given configuration C. For a given configura-
tion C one can use Wick’s theorem to compute ({O)) . from the knowledge of the single-particle
Green function:

A

—BH
(0) = [ O] ZP(C) ), where P(C) = (19)

G(x,0,s,t|x",0’,s', 1) = ((Tcxas(r) Lo (T Mes (20)

where 7 denotes the imaginary-time ordering operator. The corresponding equal-time quan-
tity reads
G(x,0,s,7lx’,07,5",7) = ({€,.55(T)E L, 0o (T))c- (21)

Since, for a given HS field, translation invariance in imaginary-time is broken, the Green func-
tion has an explicit T and 7’ dependence. On the other hand it is diagonal in the flavor index,
and independent of the color index. The latter reflects the explicit SU(N) color symmetry
present at the level of individual HS configurations. As an example, one can show that the
equal-time Green function at T = 0 reads [6]:

-1

LTrotter
G(x,0,s,0|x’,0,s,0) = (]1 + l_[ B(Ts)) (22)
x,x’

T=1

11
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with
My M, My
_ (ks) _ (ks) _ (ks)
Bg;) — l_[ e ATUnyg -V l_[ e ATsy 1 l_[ e ATT . (23)
k=1 k=1 k=1

To compute equal-time, as well as time-displaced observables, one can make use of Wick’s
theorem. A convenient formulation of this theorem for QMC simulations reads:

(Tey (7008, (7)) ¢ (7)E, (F)))e =

(T (708, (FNe (TEL (7008, (e o (TEL (7, (T
((TéiZ(Tz)éx/(T/l)»c ((Téiz(fz)éx/(’f/z)))c ((TEIZ(Tz)éxx(T;)»c

det - -7 - (24)
(TE] (e, (e (TE (2, (Fe e (TEL (R, (T

Here, we have defined the super-index x = {x, o,s}.

Wick’s theorem can be also used to express a reduced density matrix, i.e., the density matrix
for a subsystem, in terms of its correlations [113]. Within the framework of Auxiliary-Field
QMC, this allows to express a reduced density matrix 54 for a subsystem A as [60]

A
D

pPa= Z P(C)det(1 — Gu(7o; C))e_c’yqi’£ z, H®=1n {[(GA(TO; C))T]_l - 11} , (25)
C

where G4(7y; C) is the equal-time Green’s function matrix restricted on the subsystem A and
at a given time-slice 7. In Eq. (25) an implicit summation over repeated indexes x,x’ €A is
assumed. Interestingly, Eq. (25) holds also when A is the entire system: in this case, it pro-
vides an alternative expression for the density matrix, or the (normalized) partition function,
as a superposition of Gaussian operators. Eq. (25) is the starting point for computing the en-
tanglement Hamiltonian [64] and the Rényi entropies [60, 62,63]. A short review on various
computational approaches to quantum entanglement in interacting fermionic models can be
found in Ref. [66]. ALF provides predefined observables to compute the second Rényi entropy
and its associated mutual information, see Sec. 8.4.13.

In Sec. 8.4 we describe the equal-time and time-displaced correlation functions that come
predefined in ALE Using the above formulation of Wick’s theorem, arbitrary correlation func-
tions can be computed (see Appendix A). We note, however, that the program is limited to the
calculation of observables that contain only two different imaginary times.

2.1.3 Reweighting and the sign problem

In general, the action S(C) will be complex, thereby inhibiting a direct Monte Carlo sampling
of P(C). This leads to the infamous sign problem. The sign problem is formulation dependent
and as noted above, much progress has been made at understanding the class of models that
can be formulated without encountering this problem [74-77]. When the average sign is not
too small, we can nevertheless compute observables within a reweighting scheme. Here we
adopt the following scheme. First note that the partition function is real such that:

Z= ZC: eSO — ; e—S(C) = ; Re[e™5(©)]. (26)

12
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Thereby® and with the definition

. Re[e 5] .
Sgn( ) - W , ( )
the computation of the observable [Eq. (19)] is re-expressed as follows:
6y = 2t O
2ice SO
YicRe[e5(4)] ﬁi)@](@))c
- > cRe[es(@)]
B {Zc |Re[e5@]| sgn(C)ﬁ(Sc()c,]((é))c} /3 [Re[e5@]|
> |Re [e—s(c)]| sgn(C)}/ > |Re[e—5(c)]|
(s (O0),
- (sgn)p ' (28)

The average sign is

> |Re[e75]| sgn(C)
(sgn)p = == Rele 0] , (29)
Y [Refes@]]
and we have (sgn)z € R per definition. The Monte Carlo simulation samples the probability
distribution
|Re [e—s(c)]|

2 |Re [e—s(c)]| '

such that the nominator and denominator of Eq. (28) can be computed.

Notice that, for the Langevin updating scheme with variable Langevin time step, a straight-
forward generalization of the equations above is used, see Sec. 2.2.6.

The negative sign problem is still an issue because the average sign is a ratio of two partition
functions and one can argue that

P(C) = (30)

(sgn)j o< e NP, (31)

where A is an intensive positive quantity and N3 denotes the Euclidean volume. In a Monte
Carlo simulation the error scales as 1/4/Tcpy Where Tcpy corresponds to the computational
time. Since the error on the average sign has to be much smaller than the average sign itself,
one sees that:

Tepy > e22NP, (32)

Two comments are in order. First, the presence of a sign problem invariably leads to an ex-
ponential increase of CPU time as a function of the Euclidean volume. And second, A is
formulation dependent. For instance, at finite doping, the SU(2) invariant formulation of the
Hubbard model presented in Sec. 9.1 has a much more severe sign problem than the formu-
lation (presented in the same section) where the HS field couples to the z-component of the
magnetization. Optimization schemes minimize A have been put forward in [114,115].

3The attentive reader will have noticed that for arbitrary Trotter decompositions, the imaginary time propagator
is not necessarily Hermitian. Thereby, the above equation is correct only up to corrections stemming from the
controlled Trotter systematic error.

13
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2.2 Updating schemes

The program allows for different types of updating schemes, which are described below and
summarized in Tab. 1. With the exception of Langevin dynamics, for a given configuration C,
we propose a new one, C’, with a given probability T,(C — C’) and accept it according to the
Metropolis-Hastings acceptance-rejection probability,

To(C' — C)W(C’))
To(C — CHW(C) )’

P(C — C’")=min (1, (33)
so as to guarantee the stationarity condition. Here, W(C) = |Re [e_S (C):”.

Predicting how efficient a certain Monte Carlo update scheme will turn out to be for a
given simulation is very hard, so one must typically resort to testing to find out which option
produces best results. Methods to optimize the acceptance of global moves include Hybrid
Monte Carlo [80] as well as self-learning techniques [116,117]. Langevin dynamics stands
apart, and as we will see does not depend on the Metropolis-Hastings acceptance-rejection
scheme.

Updating schemes Type Description

Sequential logical (internal variable) If true, the configurations moves
through sequential, single spin flips

Propose_S0 logical  If true, proposes sequential local moves according to the

probability e, where S, is the free Ising action. This
option only works for type=1 operator where the field
corresponds to an Ising variable

Global_tau_moves logical  Whether to carry out global moves on a single time slice.
For a given time slice the user can define which part of
the operator string is to be computed sequentially. This
is specified by the variable N_sequential_start and
N_sequential_end. A number of N_tau_Global user-
defined global moves on the given time slice will then be
carried out

Global_moves logical  Iftrue, allows for global moves in space and time. A user-
defined number N_Global of global moves in space and
time will be carried out at the end of each sweep

Langevin logical  If true, Langevin dynamics is used exclusively (i.e., can
only be used in association with tempering)
Tempering Compiling Requires MPI and runs the code in a parallel tempering
option mode, also see Sec. 2.2.5, 6.2

Table 1: Variables required to control the updating scheme. Per default the program
carries out sequential, single spin-flip sweeps, and logical variables are setto . false.

2.2.1 Sequential single spin flips

The program adopts per default a sequential, single spin-flip strategy. It will visit sequentially
each HS field in the space-time operator list and propose a spin flip. Consider the Ising spin
s; r- By default (Propose_S0=.false.), we will flip it with probability 1, such that for this
local move the proposal matrix is symmetric. If we are considering the HS field [; ; we will
propose with probability 1/3 one of the other three possible fields. For a continuous field, we
modify it with a box distribution of width Amplitude centered around the origin. The default

14
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value of Amplitude is set to unity. These updating rules are defined in the Fields_mod.F90
module (see Sec. 5.2). Again, for these local moves, the proposal matrix is symmetric. Hence
in all cases we will accept or reject the move according to

o)

P(C — C')=min (1 (34)

This default updating scheme can be overruled by, e.g., setting Global_tau_moves to
.true. and not setting Nt_sequential_start and Nt_sequential_end (see Sec. 5.7.1).
It is also worth noting that this type of sequential spin-flip updating does not satisfy detailed
balance, but rather the more fundamental stationarity condition [82].

2.2.2 Sampling of e~

The package can also propose single spin-flip updates according to a non-vanishing free bosonic
action Sy(C). This sampling scheme is used if the logical variable Propose_S0issetto .true..
As mentioned previously, this option only holds for Ising variables.

Consider an Ising spin at space-time i, T in the configuration C. Flipping this spin generates
the configuration C’ and we propose this move according to

e_SO(C/) 1

"N —1_
T =)= S 150 1T 17 e=50(C") /e=50(©)”

(35)

Note that the function SO in the Hamiltonian_Hubbard_include.h module computes pre-
cisely the ratio

e50(€") /¢=50(C) | therefore Ty(C — C’) is obtained without any additional calculation. The
proposed move is accepted with the probability:

(36)

=S W (c’
P(C —C)= min(l e—())

" e=So(CIW(C)

Note that, as can be seen from Eq. (18), the bare action Sy(C) determining the dynamics of the
bosonic configuration in the absence of coupling to the fermions does not enter the Metropolis
acceptance-rejection step.

2.2.3 Global updates in space

This option allows one to carry out user-defined global moves on a single time slice. This
option is enabled by setting the logical variable Global_tau_moves to .true.. Recall that
the propagation over a time step A7 (see Eq. 23) can be written as:

My
_ _ _ (k)
e Vg +my Sup+may 7)) L e Vi(s1,7) | | e ATT , (37)
k=1

where e~V2(") denotes one element of the operator list containing the HS fields. One can pro-

vide an interval of indices, [Nt_sequential_start, Nt_sequential_end], in which the
operators will be updated sequentially. Setting Nt_sequential_start = 1 and Nt_sequen-
tial_end = M; + My reproduces the sequential single spin flip strategy of the above section.

The variable N_tau_Global sets the number of global moves carried out on each time slice
ntau. Each global move is generated in the routine Global_move_tau, which is provided by
the user in the Hamiltonian file. In order to define this move, one specifies the following
variables:
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* Flip_length: An integer stipulating the number of spins to be flipped.

* Flip_list(1:Flip_length): Integer array containing the indices of the operators to
be flipped.

* Flip_value(1:Flip_length): Flip_value(n) is an integer containing the new value
of the HS field for the operator Flip_list(n).

* TO_Proposal_ratio: Real number containing the quotient

TO(C/ — C)

To(C = C)’ (38)

where C’ denotes the new configuration obtained by flipping the spins specified in the
Flip_list array. Since we allow for a stochastic generation of the global move, it may
very well be that no change is proposed. In this case, TO_Proposal_ratio takes the
value O upon exit of the routine Global_move_tau and no update is carried out.

* SO_ratio: Real number containing the ratio e 50(C") /¢=50(C),

2.2.4 Global updates in time and space

The code allows for global updates as well. The user must then provide two additional func-
tions (see Hamiltonian_Hubbard_include.h): Global_move and Get_Delta_S0_global(
Nsigma_old ).

The subroutine Global_move (TO_Proposal_ratio,nsigma_old,size_clust) proposes
a global move. Its single input is the variable nsigma_old of type Field (see Section 5.2)
that contains the full configuration C stored in nsigma_old%f(M_V + M_I, Ltrot). On
output, the new configuration C’, determined by the user, is stored in the two-dimensional
array nsigma, which is a global variable declared in the Hamiltonian module. Like for the
global move in space (Sec. 2.2.3), TO_Proposal_ratio contains the proposal ratio %
Since we allow for a stochastic generation of the global move, it may very well be that no
change is proposed. In this case, TO_Proposal_ratio takes the value O upon exit, and

nsigma=nsigma_old. The real-valued size_clust gives the size of the proposed move
Number of flipped spins
*&*> Total number of spins

moves, which are printed in the info file. The variable size_clust is not necessary for the
simulation, but may help the user to estimate the effectiveness of the global update.

In order to compute the acceptance-rejection ratio, the user must also provide a function
Get_Delta_SO_global (nsigma_old) that computes the difference AS, = Sy(C) — So(C’).
Again, the configuration C’ is given by the field nsigma.

The variable N_Global determines the number of global updates performed per sweep.
Note that global updates are expensive, since they require a complete recalculation of the
weight.

). This is used to calculate the average sizes of proposed and accepted

2.2.5 Parallel tempering

Exchange Monte Carlo [118], or parallel tempering [119], is a possible route to overcome
sampling issues in parts of the parameter space. Let h be a parameter which one can vary
without altering the configuration space {C} and let us assume that for some values of h one
encounters sampling problems. For example, in the realm of spin glasses, h could correspond
to the inverse temperature. Here at high temperatures the phase space is easily sampled,
but at low temperatures simulations get stuck in local minima. For quantum systems, h could
trigger a quantum phase transition where sampling issues are encountered, for example, in the
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ordered phase and not in the disordered one. As its name suggests, parallel tempering carries
out in parallel simulations at consecutive values of h: hy,hs,:--h,, with hy < hy < -+ < h,,.
One will sample the extended ensemble:

W(hl) Cl)W(hZ: CZ) T W(hn: Cn)
ch,czf”,cn W(hlz C1)W(h2, CZ) o W(hn; Cn)’
where W (h, C) corresponds to the weight for a given value of h and configuration C. Clearly,

one can sample P([hy,C;],[hy,Cy], -+ ,[hy, C,]) by carrying out n independent runs. How-
ever, parallel tempering includes the following exchange step:

P([hl’cl:I’[hZ:CZ])"' :[hmcn]): (39)

[hl’ Cl])"' :[hiaci],[hi+lﬁci+1];"' a[hn’ Cn] g
[hlacl]" ) [hi’ Ci+1]:[hi+1:Ci]"' ) [hru Cn] (40)

which, for a symmetric proposal matrix, will be accepted with probability

. ( W (h;, Ci1)W (hiyq, Ci))
min| 1, .
W(h;, COW (hiz1,Ciy1)

(41)

In this way a configuration can meander in parameter space h and explore regions where
ergodicity is not an issue. In the context of spin-glasses, a low temperature configuration,
stuck in a local minima, can heat up, overcome the potential barrier and then cool down
again.

A judicious choice of the values h; is important to obtain a good acceptance rate for the
exchange step. With W(h,C) = e—5(C)  the distribution of the action S reads:

P(h,S) =Y P(h,C)5(S(h,C)—S). (42)
Cc

A given exchange step can only be accepted if the distributions P(h,S) and P(h + Ah,S)
overlap. For (S);, < (S)n+an one can formulate this requirement as:

(Shh + (AS) 2 (S)hsan — (AS)pran, With (AS), = /(S — (S)n) ) (43)
Assuming (AS)pan = (AS);, and expanding in Ah one obtains:
2(AS)y,
Ah~ —————,
EIGINELD “4)

The above equation becomes transparent for classical systems with S(h, C) = hH(C). In this
case, the above equation reads:

Ah ~ 2hC ve , with ¢ = h?((H — (H),)*);. (45)

+h(H),

Several comments are in order:

i) Let us identify h with the inverse temperature such that ¢ corresponds to the specific
heat. This quantity is extensive, as well as the energy, such that Ah ~ 1/+/N where N
is the system size.

ii) Near a phase transition the specific heat can diverge, and h must be chosen with partic-
ular care.

iii) Since the action is formulation dependent, also the acceptance rate of the exchange
move equally depend upon the formulation.

The quantum Monte Carlo code in the ALF project carries out parallel-tempering runs when the
script configure. sh is called with the argument Temper ing before compilation, see Sec. 6.2.
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2.2.6 Langevin dynamics

For models that include continuous real fields s = {skyf} there is the option of using Langevin
dynamics for the updating scheme, by setting the variable Langevin to .true.. This corre-
sponds to a stochastic differential equation for the fields. They acquire a discrete Langevin
time t; with step width &t; and satisfy the stochastic differential equation

S(tl + 6[’1) = S(tl)—Qa;(s((tl)))(stl + \V 26[’1 n(tl) (46)

Here, 1n(t;) are independent Gaussian stochastic variables satisfying:

(M(t1))y =0 and (g - (E)N o (E))y = O prBz18 1,5 (47)

S(s(t;)) is an arbitrary real action and Q is an arbitrary positive definite matrix. By default Q is
equal to the identity matrix, but a proper choice can help accelerate the update scheme, as we
discuss below. We refer the reader to Ref. [120] for an in-depth introduction to stochastic dif-
ferential equations. To see that the above indeed produces the desired probability distribution
in the long Langevin time limit, we can transform the Langevin equation into the correspond-
ing Fokker-Plank one. Let P(s, t;) be the distribution of fields at Langevin time t;. Then,

P(s, tl+6tl):JDSIP(S/)tl)<6(s_I:S/_Qagis,)6tl+ 25tlQﬂ(tl)])> , (48)

n

where 6 corresponds to the L .,M; dimensional Dirac d-function. Taylor expanding up to
order 6t; and averaging over the stochastic variable yields:

8S(s )

t;

p(s,tl+5tl)=JDs’P(s’,tz)(5(s’—S)—aa, (s'=s)Q

Jd 0

+8$’Qas’

5 (s’—s) 5tl) +0(6t7). (49
Partial integration and taking the limit of infinitesimal time steps gives the Fokker-Plank equa-

tion
25(s) 8P(s,tl))

0 10
aJs s

0
a—P(S tz)_ (P( t)Q

(50)
The stationary, a%P(s, t;) = 0, normalizable, solution to the above equation corresponds to
the desired probability distribution:

e—S(s)

P(s)=————.
(s) ste—S(s)

(51

Taking into account a potential negative sign problem, the action for our general model reads:
S(C)=—In|Re {59} (52)

where S(C) is defined in Eq. (18). Hence,

as(c 1 .~ 3S8(C
8sk’f Re {el¢(c)} 3sk’T
with SO
ig(c) —
e ] (54)
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corresponding to the variable PHASE in the ALF-package.
Therefore, to formulate the Langevin dynamics we need to estimate the forces:

F
35(C) _ 35(C) , 25°(C) 55)
aSk’T 3sk’T Bsk’f

with the fermionic part of the action being

N My Lryotter
F MV LTrorter Ncol Z Z Z vV _ATUkak,snk,T
S (C) — _ln I_[ l_[ Yk,T e s=1k=1 =1

k=1 7=1

Np Lrotter My M My Neol
IR, (ks) _ (ks) (k)
xl |[det(]l+ | | | |e ATUmVE | |e Aty I | |e AtT s):| . (56)
k=1

s=1 =1 k=1 k=1

The forces must be bounded for Langevin dynamics to work well. If this condition is violated
the results produced by the code are not reliable.

One possible source of divergence is the determinant in the fermionic action. Zeros lead to
unbounded forces and, in order to mitigate this problem, we adopt a variable time step. The
user provides an upper bound to the fermion force, Max_Force and, if the maximal force in a
configuration, Max_Force_Conf, is larger than Max_Force, then the time step is rescaled as

Max_Force

5t = * 5t;. (57)
Max_Force_Conf

With the adaptive time step, averages are computed as:

—S(Cn)

> (5t)n Sgn(Cn)W ((0))c,)
>7.(81),5gn(Cy) '

where sgn(C,,) is defined in Eq. (27). In this context the adaptive time step corresponds to the
variable Mc_step_weight required for the measurement routines (see Sec. 5.4).

A possible way to reduce autocorrelation times is to employ Fourier acceleration [121,122].
As we see from Eq. (51), the choice of the matrix Q does not alter the probability distribution
obtained from the Langevin equation. The main idea of Fourier acceleration is to exploit this
freedom and use Q to enhance (reduce) the Langevin time step 6t; of slow (fast) modes of the
fields s [123]. The modified Langevin equation reads:

9S(s(t;))
ds(tr)

(0) =

(58)

s(t+5t) = s(t)— £ [Qﬁ[ ]5tz+ 25tzQﬁ[n(tz)]], (59)

with F being a transformation to independent modes of the field. This generically corresponds
to a Fourier transform, thus the notation. Currently, Fourier acceleration is not implemented
in ALE but can be included by the user.

In order to use Langevin dynamics the user also has to provide the Langevin time step

Delta_t_Langevin_HMC, the maximal force Max_Force, set Global _update_scheme=Langevin
35,(C)
8sk,7
Langevin_HMC_SO of the Hamiltonian files. The Langevin update for a general Hamiltonian

is carried out in the module Langevin_HMC_mod.F90. In particular the fermion forces,

in the parameter file. Furthermore, the forces are to be specified in the routine Ham_-

asf(c <
SO perty 3109 (1690, 9)) ©
T s=1
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are computed in this module. In the above, we introduce a Green function that depends on
the time slice 7 and the interaction term k to which the corresponding field s . belongs:

Tr [ﬁé)(k, )¢, sc' U>)(k T)]

6% (k1) = — 61)
Te [ 05k, 7)07 (K, 7) |
where the following definitions are used
LTrotter MV MI
A atyrlks) a ATy(ks)a
(5)(k/ ) = l_[ (U(s)("r))l_le‘/_ATUknk’T/CSV( e, l_[ e_ATSk,r’CSI( )CS, (62)
T=1'+1 k=1 k=k'+1
K’ My
n _ etk _Arei TR g
Ug)(k/, )= l_[ o ATS o ETHE l_[ ATe] THE l_[ (U(s)(l') (63)
k=1 k=1
My M, My
U(s)( 7) = l_[ oV —ATU E[VEe l_[ o~ ATy ] T l_[ oAl T®e 64)
k=1 k=1 k=1

The vector c contains all fermionic operators c , of flavor s.

During each Langevin step, all fields are updated and the Langevin time is incremented by
5t;. At the end of a run, the mean and maximal forces encountered during the run are printed
out in the info file.

The great advantage of the Langevin updating scheme is the absence of update rejection,
meaning that all fields are updated at each step. As mentioned above, the price we pay for
using Langevin dynamics is ensuring that forces show no singularities. Two other potential
issues should be highlighted:

* Langevin dynamics is carried out at a finite Langevin time step, thereby introducing a
further source of systematic error.

* The factor 4/26t; multiplying the stochastic variable makes the noise dominant on short
time scales. On these time scales Langevin dynamics essentially corresponds to a random
walk. This has the advantage of allowing one to circumvent potential barriers, but may
render the updating scheme less efficient than the hybrid molecular dynamics approach.

Example - Hubbard chain at half-filling

Let us consider a 6-site Hubbard chain at half-filling with U/t = 4 and 8t = 4. The Hubbard
interaction can be decoupled using a continuous HS transformation, where we introduce a
real auxiliary field s; . for every lattice site i and time slice 7. When the HS fields are coupled
to the z-component of the magnetization (see Sec. 9.1), the partition function can be written

as
Lvotter Nunit-cell dsl . _152 )
7=
L rotter - Yunit-ce!
X l_[ det (]H— i_[ l_lu( ATUsie (ls))e_MT)+O(AT2). (65)

s=1,1

The flavor-dependent interaction matrices have only one non-vanishing entry each:

V=D =5,,6,; and V=PD=—5 5
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The forces of the Hubbard model are given by:

3S(C) is S)(:
=Sy VATU ) Te [V (1-69(,1))], (66)

LT s=1.1

where the Green function is defined by Eq. (61) with

Lyotter Nunit-cell PPN

U5 = [ (On) [ Vo tu-avts, (67)
it i=i'+1
i T y7(s) i —

Ug)(i/, )= l_[ (e_ ATUs; Ve ) e ATETE l_[ (U(s)(T)) ) (68)
i=1 T=1
Nynit-cell At rr(is) A AT

b= ermmesvos) s, @

i=1

One can show that for periodic boundary conditions the forces are not bounded and to make
sure that the program does not crash we set Max_Force = 1.5.

The results are: the reference, discrete-variable code gives
(H) = —3.4684 £ 0.0007, (70)
while the Langevin code at 6¢; = 0.001 yields
(A) = —3.457 £0.010 (71)

and at 6t; =0.01
(H) = —3.495 + 0.007. (72)

At 6t; = 0.001 the maximal force that occurred during the run was 112, whereas at 6t; = 0.01
it grew to 524. In both cases the average force was given by 0.45. For larger values of &t
the maximal force grows and the fluctuations on the energy become larger (for instance,
(A) = —3.718439 + 0.206469 at 5t; = 0.02; for this parameter set the maximal force we
encountered during the run was of 1658).

Controlling Langevin dynamics when the action has logarithmic divergences is a challenge,
and it is not a given that the results are satisfactory. For our specific problem we can solve this
issue by considering open boundary conditions. Following an argument put forward in [89],
we can show, using world lines, that the determinant is always positive. In this case the action
does not have logarithmic divergences and the Langevin dynamics works beautifully well, see
Fig. 1.
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Figure 1: Total energy for the 6-site Hubbard chain at U/t = 4, ft = 4 and with
open boundary conditions. For this system it can be shown that the determinant is
always positive, so that no singularities occur in the action and, consequently, the
Langevin dynamics works very well. The reference data point at 6t; = 0 comes from
the discrete field code for the field coupled to the z-component of the magnetiza-
tion and reads —2.8169 £+ 0.0013, while the extrapolated value is —2.8176 £ 0.0010.
Throughout the runs the maximal force remained bellow the threshold of 1.5. The
displayed data has been produced by the pyALF script Langevin.py.

2.2.7 Hybrid Monte dynamics

Hybrid molecular dynamics circumvents some drawbacks of Langevin dynamics. It does not
introduce a systematic error and does not boil down to a random walk at small time steps.
The approach is based on the Metropolis-Hastings importance sampling formula. Let C and
C’ be configurations in the Monte Carlo space. The probability of accepting a move form C to
C’ is given by

(73)

P(C—-C)H= max(To(C/ — CP(C) 1)

To(C - CHP(C)”

where T,(C’ — C) is the probability of proposing a move from C’ to C. In the Monte Carlo
approach, we will iterate the above procedure so as to generate a time series of configurations
C,,- Provided that we are able to reach all configurations in the Monte Carlo space from any
starting configuration, then,

.1
lim —
n—-oo n

Z 6Cm,C = P(C). (74)
m=1

Ideally one would like to propose global, ergodic, moves that satisfy P(C — C’) = 1 and
thereby hope to have small autocorrelation times. This is a property of cluster algorithms such
as the loop [6], SSE [84] or Wolff [124] algorithms.

We will start by expanding the configuration space to C = {p,s} and define the Hamiltonian

Tas—1
H(p,s) = ‘# +5(s). (75)
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p and s are canonical conjugate. Clearly,

Dse=S©) (O DsDpe H®S) ((H
&) = [P OUON, _ [ DsDpe (0, 6
ste—S(S) stDpe—H(PsS)

and in the hybrid molecular dynamics scheme we sample

e_H(p’s)

P(p,s)=

The mass matrix has to be positive definite and can be used to speed up simulations by assign-
ing a larger (smaller) mass to fast (slow) modes. Since M is positive and real it can be written
as M~! = BT B with sole restriction on B being that Ker(B) = {0}. The action of B or BY on
a vector of e.g. momenta has to be provided by the user. To this purpose we have included a
routine Apply_B_HMC_base in the base Hamiltonian. By default M =B = 1.

Hybrid molecular dynamics consists of two steps.
Step 1: Updating the momenta p

Here we choose: i

e_p
To(C'={p’,s} > C={p,s}) = — (78)
f dp e P
such that P(C — C’) = 1.
Step 2: Updating the positions s
This step is numerically expensive and uses Hamiltonian equations of motions,
JH J0H
p=——— and §=—— 79
P as an ap (79)

that conserve energy, H, for time independent Hamiltonians. As for the Langevin dynamics,
the fields acquire an additional time index, t,,, and s = dde. We can propagate the fields over
a given molecular dynamics time interval, Tj,, to obtain:

{p.s} (tm + T) = U7 [{p,5} (t)] (80)

where Ugn [{p,s} (t,,)] propagates the initial state {p,s} (t,,) with Hamiltonian dynamics for
a time interval T,,. The Hamiltonian equations of motion are time reversal symmetric, and
according to Liouville’s theorem conserve volumes in phase space. Thereby;,

To ({p,s} (t,, + T,y) = {p,s} (t,,)) e HUPSHtntTn))
To ({p,s} (tm) — {P,8} (t + Tp)) e H{PS} )

and the acceptance will be of unity. Clearly this corresponds to the ideal case, and in practice
the integration will be carried out with a finite time step such that the energy will not be con-
served exactly and the acceptance will not be of unity. Provided that we choose an integrator
that is time reversal symmetric (see below) then the Monte Carlo acceptance rejection step will
cure this systematic error. The acceptance-rejection step of the molecular dynamics trajectory
is the reason why this updating scheme is coined hybrid molecular dynamics. The algorithm
then proceeds by iterating step 1 followed by step 2.

In our implementation of the Hybrid Molecular dynamics approach, the forces are com-
puted exactly. This stands in contrast to the algorithm generically referred to as Hybrid Monte
Carlo where the forces are computed stochastically. The reader is referred to Refs. [5,91] for
further readings.

=1, (81)
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2.2.7.1 The leap-frog integrator

In practice one will adopt an integrator that conserves time reversal symmetry such as the
Leapfrog algorithm. Our Hamiltonian can be split into H; = p2/2 and H, = S(s). Prop-
agating with H; only allows for an exact solution since in this case p is constant and s(t)
=s(t = ty) + (t — ty)p. Similarly for H,, s is constant and p(t) = p(t = ty) — (t — to)agf).
Hence both for H; and H, the propagation can be carried out exactly such that time reversal
symmetry and Liouville’s theorem hold. In very much the same manner as for the symmetric
Trotter decomposition, the leapfrog approach carries out a dt,, time interval propagation of

the full Hamiltonian H = H; + H, as:

H _ H H H 2
Use, = Usi, j2°Use, ©Us, 5+ 0O (8¢2). (82)

Clearly time reversal is satisfied and because of this property the error contains only even
powers of the time step. The energy H = H; + H, will however not be conserved exactly such
that, as mentioned above, the molecular dynamics trajectory will be accepted according to:

(To Up,s} (6 + T,) — {p, 5} (£,,)) e HPSHEnt T) )
To ({p, s} (t,) = (P8} (£ + T)) e HEPSHEm)

o~ HUPSHty+T,)
= max —,1 . (83)

e—H{ps)(tn)

2.2.7.2 Specific Implementation

To use the hybrid molecular dynamics update, the user has to set HMC=.true. in the pa-
rameter file. Clearly we also have to use continuous Hubbard-Stratonovitch fields such that
OP_V%type=3 . The time step for the leap-frog integrator is given by the same variable as for
the Langevin dynamics, Delta_t_Langevin_HMC, and the total number of leap-frog molec-
ular dynamics steps is given by the variable Leapfrog_steps. Thereby t,, = Delta_t_-
Langevin_HMC x Leapfrog_steps. Molecular dynamics can be understood a clever way to
propose a global update, that will be accepted or rejected by a Metropolis acceptance rejection
step. Hence it can be combined with other moves such as our standard sequential updating
scheme. In the code, this will happen provide that the variable Sequential=.true.. If both
the variables HMC=. true. and Sequential=.true. then N_HMC_sweeps will correspond to
the number of hybrid molecular dynamics carried out between a sequential sweep. In order
to address potential ergodicity issues [91] it is crucial to integrate both sequential and hybrid
molecular dynamics moves, rather than relying solely on hybrid molecular dynamics [125].

To test the code, we have carried out high precision calculations of the 6-sites Hubbard
chain with open boundary conditions (see Sec. 2.2.6) at §t = 4. Using only hybrid molecular
dynamics updates we obtain: (H) = —2.81715 + 0.00023. This compares very well with the
discrete field sequential updating run: (H) = —2.81706 + 0.00013.

2.3 The Trotter error and checkerboard decomposition

2.3.1 Asymmetric Trotter decomposition

In practice, many applications are carried out at finite imaginary time steps, and it is important
to understand the consequences of the Trotter error. How does it scale with system size and
what symmetries does it break? In particular, when investigating a critical point, one should
determine whether the potential symmetry breaking associated with the Trotter decomposition
generates relevant operators.
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To best describe the workings of the ALF code, we divide the Hamiltonian into hopping
terms Hy and interaction terms Hy + H; + Ho ;. Let

Ny Ny
Hr=> > T0=>"1, (84)
i=1 keSiT i=1

Here the decomposition follows the rule that if k and k’ belong to the same set SiT then
[T(k), T(k/)] = 0. An important case to consider is that of the checkerboard decomposition.
For the square lattice we can decouple the nearest neighbor hopping into N; = 4 groups, each
consisting of two site hopping processes. This type of checkerboard decomposition is activated
for a set of predefined lattices by setting the flag Checkerboard to .true.. We will carry out
the same separation for the interaction:

N

Ty +Hy +Hor =D 0, (85)

i=1
where each O; contains a set of commuting terms. For instance, for the Hubbard model, the
above reduces to U Y.; fi; 1#1; | such that Ny =1 and O; = U X, A; 1A |.

The default Trotter decomposition in the ALF code is based on the equation:

A N N 2
e~AT(Arh) _ g~Achg—ach | ATT [8,A]+0(ac?). (86)

Using iteratively the above the single time step is given by:

No Ny
e—AT’H — e_ATOz e—ATTJ
i=1 j=1
A2 [(No Ni Np—1 No—1
+— (ZZ[TJ’Q]J“ > [Tj/,T]?]+ > [éi,,éi]) +0(Aar?). (87
i=1 j=1 j’ i'=1
EAT}All

In the above, we have introduced the shorthand notation

Ny N
T> = Z T; and 07 = Z 0;. (88)
j=n+1 j=n+1
The full propagation then reads
No . Ny i Lvotter o
Unpprox = (l_[ e ATO: l—[ e_ATTJ) = PlH+M) 4 0 (at?)
i=1 j=1 (89)

\ p . \
=ePH —J dre~(F=DH) =™ L O(AT?).
0

The last step follows from time-dependent perturbation theory. The following comments are
in order:

A

* The error is anti-Hermitian since ﬁi = —A;. As a consequence, if all the operators as
well as the quantity being measured are simultaneously real representable, then the
prefactor of the linear in A7 error vanishes since it ultimately corresponds to comput-
ing the trace of an anti-symmetric matrix. This lucky cancellation was put forward in
Ref. [101]. Hence, under this assumption — which is certainly valid for the Hubbard
model considered in Fig. 2 — the systematic error is of order At2.
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* The biggest drawback of the above decomposition is that the imaginary-time propaga-
tion is not Hermitian. This can lead to acausal features in imaginary-time correlation
functions [126]. To be more precise, the eigenvalues of Hyp,rox = —% log Uppprox Need
not be real and thus imaginary-time displaced correlation functions may oscillate as a
function of imaginary time. This is shown in Fig. 2(a) that plots the absolute value of
local time-displaced Green function for the Honeycomb lattice at U/t = 2. Sign changes
of this quantity involve zeros that, on the considered log-scale, correspond to negative
divergences. As detailed in [112], using the non-symmetric Trotter decomposition leads
to an additional non-hermitian second-order error in the measurement of observables O
that is proportional to [T,[T,0]]. As we see next, these issues can be solved by consid-
ering a symmetric Trotter decomposition.

2.3.2 Symmetric Trotter decomposition

To address the issue described above, the ALF package provides the possibility of using a sym-
metric Trotter decomposition,

3

e—AT(A+I§) _ e—ATA7ze—mée—mA72 n Al_”; [2A+]§, [B,A]] n O(A’ES), (90)

by setting the Symm flag to .true.. Before we apply the expression above to a time step, let
us write

_acyr g Mg _oesMrp AT L
e ATH = T N T AR 0 T 20 T L 28 [2f> 167, [07, 17 ]]+0 (A7%). (91)

12
EATiTO
Then,
- No—1 ) 1 )
AT O l_[ e—%oi e—AT0y, l_[ e—%ol
i=1 i=Np—1
T3 [20,+07,[67,0;]]+0(a7%), (92)
i=1
:A:io
At NT Nr—1 AT 2 AT ! At
e 2 ZJ Ty — l_[ e ey e 2 Ty l_[ e_TTJ
j=1 j=Np—1
Al Np—1
g [2f;+ 12, [17. 1] ] +0(ac®) ©93)
j=1
:ATiT
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and we can derive a closed equation for the free energy density:

Np—1 1
1 _acqo | _arg _Atg
fapprox = _ﬂ_V log Tr | | e F e 2T | | e X
=1 j=Np—1
No—1 1
| | e—%oi e A0y, | | e—%oi %
i=1 i=Np—
NT—]. 1 LTrotter
AT 4 AT 4 AT 5
[Tt et | [ %0
j=1 Jj=Nr—1
1.4 A A 4

The following comments are in order:

* The approximate imaginary-time propagation from which the fy,ox is derived is Her-
mitian. Hence no spurious effects in imaginary-time correlation functions are to be ex-
pected. This is clearly shown in Fig. 2(a).

* In Fig. 2(b) we have used the ALF-library with Symm=. true. with and without checker-
board decomposition. We still expect the systematic error to be of order At?. However
its prefactor is much smaller than that of the aforementioned anti-symmetric decompo-
sition.

» We have taken the burden to evaluate explicitly the prefactor of the A72 error on the free
energy density. One can see that for Hamiltonians that are sums of local operators, the
quantity (im +io +2}A\T) scales as the volume V of the system, such that the systematic
error on the free energy density (and on correlation functions that can be computed
by adding source terms) will be volume independent. For model Hamiltonians that are
not sums of local terms, care must be taken. A conservative upper bound on the error
is <ﬁ'TO + 710 + ZiT) o< A72V3, which means that, in order to maintain a constant
systematic error for the free energy density, we have to keep ATV constant. Such a
situation has been observed in Ref. [71].

Alternative symmetric second order methods as well as the issues with decompositions of
higher order have been detailed in [112].

2.3.3 The Synn flag

If the Symm flag is set to true, then the program will automatically — for the set of predefined
lattices and models — use the symmetric At time step of the interaction and hopping terms.
However, the specification of the interaction in the symmetric form of Eq. 94 has to be carried
out by the user in the Hamiltonian module.

To save CPU time when the Symm flag is on we carry out the following approximation:

2
Ny—1 1
l_[e_%fl e_%TNT l_[ e_%TJ o~
j=1 j=Nr—1
Np—1 1
l_[e_%fi Pl l—[ ezl (95)
j=1 j=Nr—1

The above is consistent with the overall precision of the Trotter decomposition and more im-
portantly conserves the Hermiticity of the propagation.
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Figure 2: Analysis of Trotter systematic error. Left: We consider a 6 x 6 Hubbard
model on the Honeycomb lattice, U/t = 2, half-band filling, inverse temperature
pt = 40, and we have used an HS transformation that couples to the density. The
figure plots the local-time displaced Green function. Right: Here we consider the
6 x 6 Hubbard model at U/t = 4, half-band filling, inverse temperature 3t =5, and
we have used the HS transformation that couples to the z-component of spin. We pro-
vide data for the four combinations of the logical variables Symm and Checkerboard,
where Symm=.true. (.false.) indicates a symmetric (asymmetric) Trotter decom-
position has been used, and Checkerboard=.true. (.false.) that the checker-
board decomposition for the hopping matrix has (not) been used. The large devia-
tions between different choices of Symm are here ~ [T,[ T, H]] as detailed in [112].

2.4 Stabilization - a peculiarity of the BSS algorithm

From the partition function in Eq. (18) it can be seen that, for the calculation of the Monte
Carlo weight and of the observables, a long product of matrix exponentials has to be formed.
In addition to that, we need to be able to extract the single-particle Green function for a given
flavor index at, say, time slice T = 0. As mentioned above (cf. Eq. (22)), this quantity is given

by:
-1

LTrotter
G=(]l+ l_[BT) , (96)
=1

which can be recast as the more familiar linear algebra problem of finding a solution for the

linear system
LTrotter
(11+ 1 Bf)xzb. 97)

=1
The matrices B, € C™" depend on the lattice size as well as other physical parameters that
can be chosen such that a matrix norm of B, can be unbound in magnitude. From standard
perturbation theory for linear systems, the computed solution X would contain a relative error

L
|.5Z_x| _ Trotter
X =0|ex,| 1+ 11 B, ||, (98)

where e denotes the machine precision, which is 272 for IEEE double-precision numbers, and
x,(M) is the condition number of the matrix M with respect to the matrix p-norm. Due to
Il . B containing exponentially large and small scales, as can be seen in Eq. (18), a straightfor-
ward inversion is completely ill-suited, in that its condition number would grow exponentially
with increasing inverse temperature, rendering the computed solution X meaningless.

In order to circumvent this, more sophisticated methods have to be employed. In the realm
of the BSS algorithm there has been a long history [4, 94, 127-130] of using various matrix
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factorization techniques. The predominant techniques are either based on the singular value
decomposition (SVD) or on techniques using the QR decomposition. The default stabilization
strategy in the auxiliary-field QMC implementation of the ALF package is to form a product of
QR-decompositions, which is proven to be weakly backwards stable [129]. While algorithms
using the SVD can provide higher stability, though at a higher cost, we note that great care
has to be taken in the choice of the algorithm, which has to achieve a high relative accuracy
[131,132].

As a first step we assume that, for a given integer NWrap, the multiplication of NWrap B
matrices has an acceptable condition number and, for simplicity, that Ly, is divisible by
NWrap. We can then write:

-1
Lvotter
NWrap NWrap

G={1+ [ ] []Bo-vmeapss | - (99)
i=1 7=1

EBI’

The key idea is to efficiently separate the scales of a matrix from the orthogonal part of a
matrix. This can be achieved with the QR decomposition of a matrix A in the form A; = Q;R;.
The matrix Q; is unitary and hence in the usual 2-norm it satisfies x,(Q;) = 1. To get a handle
on the condition number of R; we consider the diagonal matrix

(Di)n,n = |(Ri)n,n| (100)
and set R; = Dl._lRi, which gives the decomposition
Ai == QiDiRi' (101)

The matrix D; now contains the row norms of the original R; matrix and hence attempts to
separate off the total scales of the problem from R;. This is similar in spirit to the so-called
matrix equilibration which tries to improve the condition number of a matrix through suitably
chosen column and row scalings. Due to a theorem by van der Sluis [133] we know that the
choice in Eq. (100) is almost optimal among all diagonal matrices D from the space of diagonal
matrices D, in the sense that

-1 1/ . -1
k,((D;)""R;)<n plr)l‘lengp(D R)).

Now, given an initial decomposition A;_; = [I;B: = Q;_1D;_;T;_;, an update B;A;_; is
formed in the following three steps:

1. Form M; = (B;Q;_;)D;_;. Note the parentheses.
2. Do a QR decomposition of M ; = Q;D;R;. This gives the final Q; and D;.
3. Form the updated T matrices T; =R;T;_;.

This is a stable but expensive method for calculating the matrix product. Here is where NWrap
comes into play: it specifies the number of plain multiplications performed between the QR
decompositions just described, so that NWwrap = 1 corresponds to always performing QR de-
compositions whereas larger values define longer intervals where no QR decomposition will
be performed. Whenever we perform a stabilization, we compare the old result (fast updates)
with the new one (recalculated from the QR stabilized matrices). The difference is docu-
mented as the stability, both for the Green function and for the sign (of the determinant) The
effectiveness of the stabilization has to be judged for every simulation from the output file
info (Sec. 5.7.2). For most simulations there are two values to look out for:
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* Precision Green

* Precision Phase

The Green function, as well as the average phase, are usually numbers with a magnitude of
O(1). For that reason we recommend that NWwrap is chosen such that the mean precision is
of the order of 1078 or better (for further recommendations see Sec. 6.4). We include typical
values of Precision Phase and of the mean and the maximal values of Precision Green
in the example simulations discussed in Sec. 7.9.

3 Auxiliary Field Quantum Monte Carlo: projective algorithm

The projective approach is the method of choice if one is interested in ground-state properties.
The starting point is a pair of trial wave functions, |Wr; ), that are not orthogonal to the
ground state |¥,):

(W71 /r|¥o) # 0. (102)
The ground-state expectation value of any observable O can then be computed by propagation
along the imaginary time axis:
(WolONwy) - (Upy e O e (B G e=0M |y, 1)
(o) f—o0 (Wr |e~(20+0)H | R)

; (103)

where 3 defines the imaginary time range where observables (time displaced and equal time)
are measured and 7 varies from O to 3 in the calculation of time-displace observables. The
simulations are carried out at large but finite values of 0 so as to guarantee convergence to
the ground state within the statistical uncertainty. The trial wave functions are determined up
to a phase, and the program uses this gauge choice to guarantee that

(¥r [ ¥rR) > 0. (104)

In order to use the projective version of the code, the model’s namespace in the parameter
file must set projector=.true. and specify the value of the projection parameter Theta, as
well as the imaginary time interval Beta in which observables are measured.

Note that time-displaced correlation functions are computed for a T ranging from 0 to 3.
The implicit assumption in this formulation is that the projection parameter Theta suffices
to reach the ground state. Since the computational time scales linearly with Theta large
projections parameters are computationally not expensive.

3.1 Specification of the trial wave function

For each flavor, one needs to specify a left and a right trial wave function. In the ALE they
are assumed to be the ground state of single-particle trial Hamiltonians HT,L /r and hence
correspond to a single Slater determinant each. More specifically, we consider a single-particle
Hamiltonian with the same symmetries, color and flavor, as the original Hamiltonian:

col Nﬂ Ndlm
L/R)A
LT EDIDIP I LI (105)
o=1s=1 X,y

Ordering the eigenvalues of the Hamiltonian in ascending order yields the ground state

Neot Np Nparts /Ngim
v =TT (z mu,ss,f/m) o) 106

o=1s=1 n=1 \x=1
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where

UhELRRELAYGELR = Diag (e(ls,L/R) . e(s,L/R))' (107)

? >~ Ndim

The trial wave function is hence completely defined by the set of orthogonal vectors UJ(CS,;IL/ R)
for n ranging from 1 to the number of particles in each flavor sector, N,y ;. This information
is stored in the WaveFunction type defined in the module WaveFunction_mod (see Sec. 5.5).
Note that, owing to the SU(N,,) symmetry, the color index is not necessary to define the trial
wave function. The user will have to specify the trial wave function in the following way:

Do s =1, N_f1
Do x = 1,Ndim
Do n = 1, N_part(s)

WF_L(s)%P(x,n) = UEY
WF_R(s)%P(x,n) = ULP
Enddo
Enddo

Enddo

In the above WF_L and WF_R are WaveFunction arrays of length Ny. ALF comes with a set of
predefined trial wave functions, see Sec. 8.5.

Generically, the unitary matrix will be generated by a diagonalization routine such that
if the ground state for the given particle number is degenerate, the trial wave function has a
degree of ambiguity and does not necessarily share the symmetries of the Hamiltonian A T.L/R-
Since symmetries are the key for guaranteeing the absence of the negative sign problem, vi-
olating them in the choice of the trial wave function can very well lead to a sign problem.
It is hence recommended to define the trial Hamiltonians H r,1,/r Such that the ground state
for the given particle number is non-degenerate. That can be checked using the value of
WL_L/R(s)%Degen, which stores the energy difference between the last occupied and first un-
occupied single particle state. If this value is greater than zero, then the trial wave function is
non-degenerate and hence has all the symmetry properties of the trial Hamiltonians, H T.L/R-
When the projector variable is set to .true., this quantity is listed in the info file.

3.2 Some technical aspects of the projective code.

If one is interested solely in zero-temperature properties, the projective code offers many ad-
vantages. This comes from the related facts that the Green function matrix is a projector, and
that scales can be omitted.

In the projective algorithm, it is known [6] that

-1
G(x,0,s,7|x",0,5,7) = [1 — U(j)('r) (Ué)(T)Ug)(T)) U(f)(f)lc’xl (108)
with
T 7+1
U (o) = [BYPOR and uUg(r)=pPO:t [ BY, (109)
v'=1 T'=Lyotter

where B(Ts) is given by Eq. (23) and P®»L/R correspond to the Ny, x Npar,s Submatrices of
UGML/R o see that scales can be omitted, we carry out a singular value decomposition:

Ug)(f) = ﬁg)(f)d>v> and U(f)(r) = v<d<ﬁ(§)(r) (110)

such that ﬁg )(’L’) corresponds to a set of column-wise orthogonal vectors. It can be readily
seen that scales can be omitted, since

G(x,0,s,t|x",0,s,7) = [1 - f](i)(r) (Ué)(r)ﬁg)(’r))_l U(j)(r)] . (111)

X,X
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Figure 3: Comparison between the finite-temperature and projective codes for the
Hubbard model on a 6 x 6 Honeycomb lattice at U/t = 2 and with periodic bound-
ary conditions. For the projective code (blue and black symbols) ft = 1 is fixed,
while 6 is varied. In all cases we have Att = 0.1, no checkerboard decomposition,
and a symmetric Trotter decomposition. For this lattice size and choice of bound-
ary conditions, the non-interacting ground state is degenerate, since the Dirac points
belong to the discrete set of crystal momenta. In order to generate the trial wave
function we have lifted this degeneracy by either including a Kékulé mass term [46]
that breaks translation symmetry (blue symbols), or by adding a next-next nearest
neighbor hopping (black symbols) that breaks the symmetry nematically and shifts
the Dirac points away from the zone boundary [135]. As apparent, both choices of
trial wave functions yield the same answer, which compares very well with the finite
temperature code at temperature scales below the finite-size charge gap.

Hence, stabilization is never an issue for the projective code, and arbitrarily large projection
parameters can be reached.

The form of the Green function matrix implies that it is a projector: G? = G. This property
has been used in Ref. [134] to very efficiently compute imaginary-time-displaced correlation
functions.

3.3 Comparison of finite and projective codes.

The finite temperature code operates in the grand canonical ensemble, whereas in the projec-
tive approach the particle number is fixed. On finite lattices, the comparison between both
approaches can only be made at a temperature scale below which a finite-sized charge gap
emerges. In Fig. 3 we consider a semi-metallic phase as realized by the Hubbard model on the
Honeycomb lattice at U/t = 2. It is evident that, at a scale below which charge fluctuations
are suppressed, both algorithms yield identical results.
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4 Monte Carlo sampling

Error estimates in Monte Carlo simulations are based on the central limit theorem [136] and
can be a delicate matter, especially as it requires independent measurements and a finite vari-
ance. In this section we give examples of the care that must be taken to satisfy these require-
ments when using a Monte Carlo code. This is part of the common lore of the field and we
cover them briefly in this text. For a deeper understanding of the inherent issues of Markov-
chain Monte Carlo methods we refer the reader to the pedagogical introduction in chapter
1.3.5 of Krauth [137], the overview article of Sokal [82], the more specialized literature by
Geyer [138] and chapter 6.3 of Neal [139].

In general, one distinguishes local from global updates. As the name suggest, the local
update corresponds to a small change of the configuration, e.g., a single spin flip of one of the
Lvorer(M; + My ) field entries (see Sec. 2.2), whereas a global update changes a significant
part of the configuration. The default update scheme of the ALF implementation are local
updates, such that there is a minimum number of moves required for generating an indepen-
dent configuration. The associated time scale is called the autocorrelation time, T, and is
generically dependent upon the choice of the observables.

We call a sweep a sequential propagation from T = 0 to T = L gy and back, such that each
field is visited twice in each sweep. A single sweep will generically not suffice to produce an
independent configuration. In fact, the autocorrelation time T, characterizes the required
time scale to generate independent values of ((0)). for the observable O. This has several
consequences for the Monte Carlo simulation:

* First of all, we start from a randomly chosen field configuration, such that one has to
invest a time of at least one T,,,, but typically many more, in order to generate rele-
vant, equilibrated configurations before reliable measurements are possible. This phase
of the simulation is known as the warm-up or burn-in phase. In order to keep the code as
flexible as possible (as different simulations might have different autocorrelation times),
measurements are taken from the very beginning and, in the analysis phase, the param-
eter n_skip controls the number of initial bins that are ignored.

* Second, our implementation averages over bins with NSWEEPS measurements before
storing the results on disk. The error analysis requires statistically independent bins in
order to generate reliable confidence estimates. If the bins are too small (averaged over
a period shorter then T,,,), then the error bars are typically underestimated. Most of
the time, however, the autocorrelation time is unknown before the simulation is started
and, sometimes, single runs long enough to generate appropriately sized bins are not
feasible. For this reason, we provide a rebinning facility controlled by the parameter
N_rebin that specifies the number of bins recombined into each new bin during the
error analysis. One can test the suitability of a given bin size by verifying whether an
increase in size changes the error estimate (For an explicit example, see Sec. 4.2 and the
appendix of Ref. [94]).

* The N_rebin variable can be used to control a further issue. The distribution of the
Monte Carlo estimates ((O)). is unknown, while a result in the form (mean = error)
assumes a Gaussian distribution. Every distribution with a finite variance turns into a
Gaussian one once it is folded often enough (central limit theorem). Due to the internal
averaging (folding) within one bin, many observables are already quite Gaussian. Oth-
erwise one can increase N_rebin further, even if the bins are already independent [ 140].

* The last issue we mention concerns time-displaced correlation functions. Even if the
configurations are independent, the fields within the configuration are still correlated.
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Hence, the data for S, g(k, 7) [see Sec. 5.4; Eq. (135)] and S, g(k, T + A7) are also
correlated. Setting the switch N_Cov=1 triggers the calculation of the covariance matrix
in addition to the usual error analysis. The covariance is defined by

1

COVery = —— ((Saplk, T) = (S p(k, 7)) (Saplk, )= (Sap(k,)))).  (112)
Bin

An example where this information is necessary is the calculation of mass gaps extracted

by fitting the tail of the time-displaced correlation function. Omitting the covariance

matrix will underestimate the error.

4.1 The Jackknife resampling method

For each observable A, B, € - -- the Monte Carlo program computes a data set of Ny;, (ideally)
independent values where for each observable the measurements belong to the same statis-
tical distribution. In the general case, we would like to evaluate a function of expectation
values, f((A), (B), (C)---) - see for example the expression (28) for the observable including
reweighting — and are interested in the statistical estimates of its mean value and the standard
error of the mean. A numerical method for the statistical analysis of a given function f which
properly handles error propagation and correlations among the observables is the Jackknife
method, which is, like the related Bootstrap method, a resampling scheme [141]. Here we
briefly review the delete-1 Jackknife scheme, which consists in generating Ny,;, new data sets of
size Npi, — 1 by consecutively removing one data value from the original set. By A(;y we denote

the arithmetic mean for the observable A, without the i-th data value A;, namely

Nain
1
Ay = ——— Ay (113)

As the corresponding quantity for the function f ({A), (B), (C) ---), we define

fiy(A), (B),(C)---) = f(AwyBay Cay-++) - (114)

Following the convention in the literature, we will denote the final Jackknife estimate of the
mean by f(.y and its standard error by Af. The Jackknife mean is given by

Nain
Fo AL B (E)-+) = 1 D oA, (B, (), (1)
in j—1

and the standard error, including bias correction, is given by

M Bin
2

> [ foy(A), (B (C) =) — fiy(A), (B). ()] . (16

i=1

Npin—1
(AfY =—1—
NBin

For f = (A), the equations (115) and (116) reduce to the plain sample average and the stan-
dard, bias-corrected, estimate of the error.

4.2 An explicit example of error estimation

In the following we use one of our examples, the Hubbard model on a square lattice in the
M, HS decoupling (see Sec. 9.1), to show explicitly how to estimate errors. We show as
well that the autocorrelation time is dependent on the choice of observable. In fact, different
observables within the same run can have different autocorrelation times and, of course, this
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Figure 4: The autocorrelation function Sy (tay,) (@) and the scaling of the error with
effective bin size (b) of three equal-time, spin-spin correlation functions O of the
Hubbard model in the M, decoupling (see Sec. 9.1). Simulations were done on a
6 x 6 square lattice, with U/t = 4 and t = 6. We used N_auto = 500 (see Sec. 6)
and a total of approximately one million bins. The original bin contained only one
sweep and we calculated around one million bins on a single core. The different
autocorrelation times for the x y-plane compared to the z-direction can be detected
from the decay rate of the autocorrelation function (a) and from the point where
saturation of the error sets in (b), which defines the required effective bin size for
independent measurements. The improved estimator (Sg. + Sg, + S¢.)/3 appears to
have the smallest autocorrelation time, as argued in the text.

time scale depends on the parameter choice. Hence, the user has to check autocorrelations of
individual observables for each simulation! Typical regions of the phase diagram that require
special attention are critical points where length scales diverge.

In order to determine the autocorrelation time, we calculate the correlation function

o Noi—tawe (0, —(0)) (04, —(0))
So(tauo) = ' (0,—(0))(0;—(0))

i=1

117)

where O; refers to the Monte Carlo estimate of the observable O in the i™ bin. This function
typically shows an exponential decay and the decay rate defines the autocorrelation time. Fig-
ure 4(a) shows the autocorrelation functions Sy () for three spin-spin-correlation functions
[Eq. (135)] at momentum k = (7, ) and at T = O:
O = Sg. for the z spin direction, O = (Sg.+Sg,)/2 for the x y plane, and O = (Sg.+Sg, +S3.)/3

for the total spin. The Hubbard model has an SU(2) spin symmetry. However, we chose a
HS field which couples to the z-component of the magnetization, M,, such that each indi-
vidual configuration breaks this symmetry. Of course, after Monte Carlo averaging one ex-
pects restoration of the symmetry. The model, on bipartite lattices, shows spontaneous spin-
symmetry breaking at T = 0 and in the thermodynamic limit. At finite temperatures, and
within the so-called renormalized classical regime, quantum antiferromagnets have a length
scale that diverges exponentially with decreasing temperatures [142]. The parameter set cho-
sen for Fig. 4 is non-trivial in the sense that it places the Hubbard model in this renormalized
classical regime where the correlation length is substantial. Figure 4 clearly shows a very short
autocorrelation time for the xy-plane whereas we detect a considerably longer autocorrela-
tion time for the z-direction. This is a direct consequence of the long magnetic length scale
and the chosen decoupling. The physical reason for the long autocorrelation time corresponds
to the restoration of the SU(2) spin symmetry. This insight can be used to define an improved,
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SU(2) symmetric estimator for the spin-spin correlation function, namely (Sg. + Sg, +Sg.)/3.
Thereby, global spin rotations are no longer an issue and this improved estimator shows the
shortest autocorrelation time, as can be clearly seen in Fig. 4(b). Other ways to tackle large
autocorrelations are global updates and parallel tempering.

A simple method to obtain estimates of the mean and its standard error from the time
series of Monte Carlo samples is provided by the aforementioned facility of rebinning. Also
known in the literature as rebatching, it consists in aggregating a fixed number N_rebin of
adjacent original bins into a new effective bin. In addition to measuring the decay rate of
the autocorrelation function (Eq. (117)), a measure for the autocorrelation time can be also
obtained by the rebinning method. For a comparison to other methods of estimating the auto-
correlation time we refer the reader to the literature [138,139,143]. A reliable error analysis
requires independent bins, otherwise the error is typically underestimated. This behavior is
observed in Fig. 4 (b), where the effective bin size is systematically increased by rebinning. If
the effective bin size is smaller than the autocorrelation time the error will be underestimated.
When the effective bin size becomes larger than the autocorrelation time, converging behavior
sets in and the error estimate becomes reliable.

4.3 Pseudocode description

The Monte Carlo algorithm as implemented in ALF is summarized in Alg. 1. Key control vari-
ables include:

Projector Uses (=true) the projective instead of finite-T algorithm (see Sec. 3)
L. Measures (Ltau=1) time-displaced observables (see Sec. 2.1.2)
Tempering Runs (=true) in parallel tempering mode (see Table 1)
Global_moves Carries out (=true) global moves in a single time slice (see Table 1)
Sequential Carries out (=true) sequential, single spin-flip updates (see Table 1)
Langevin Uses (=true) Langevin dynamics instead of sequential (see Table 1)

Per default, the finite-temperature algorithm is used, Ltau=0, and the updating used is Se-
quential (i.e., Global_moves, Tempering and Langevin default values are all . false.).

Algorithm 1 Basic structure of the QMC implementation in Prog/main.f90

> INITIALIZATION

1: call Fields_Init > Set the auxiliary fields
2: call Alloc Ham > Select Hamiltonian based on ham_name in parameters
3: call ham%Ham_Set > Set the Hamiltonian and the lattice
4: call Nsigma%in > Read in an auxiliary-field configuration or generate it randomly
5: for n = Lyyouer to 1 do > Fill the storage needed for the first actual MC sweep
6: call Wrapul > Compute propagation matrices and store them at stabilization points
7. end for
> MONTE CARLO RUN
8: for ny, =1 to N;, do > Loop over bins. The bin defines the unit of Monte Carlo time
9: for ng,, =1to Nsweep do > Loop over sweeps. Each sweep updates twice (upward and
downward in imaginary time) the space-time lattice of auxil-
iary fields
10: if Tempering then
11: call Exchange Step > Perform exchange step in a parallel tempering run
12: end if
13: if Global _moves then
14: call Global Updates > Perform chosen global updates
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15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26:

27:
28:

29:
30:

31:
32:
33:

34:
35:
36:
37:

38:

39:
40:
41:
42:
43:
44:

45:
46:
47:

48:

49:

50:
51:

end if
if Langevin then
call Langevin_update > UPDATE AND MEASURE equal-time observables
if L, ==1 then
if Projector then

call Tau p > MEASURE time-displaced observables (projective code)
else
call Tau m > MEASURE time-displaced observables (finite temperature)
end if
end if

end lf (Langevin)
if Sequential then

> UPWARD SWEEP
for n, =1 to Lyger dO

call Wrapgrup > PROPAGATE Green function from n. — 1 to n,, and compute
its new estimate at n., using sequential updates

if n, == stabilization point in imaginary time then > STABILIZE
call Wrapur > Propagate from previous stabilization point to n.
> Storage management:
— Read from storage: propagation from Loy, t0 N
— Write to storage: the just computed propagation
call CGR > Recalculate the Green function at time n. in a stable way
call Control_PrecisionG > Compare propagated and recalculated Greens
end if

if n, € [Lobs_st,Lobs_en] then
call ham%0Obser > MEASURE the equal-time observables
end if
end for

> DOWNWARD SWEEP
for n, = Lyguer to 1 do
> Same steps as for the upward sweep (propagation and estimate update, stabilization,
equal-time measurements) now downwards in imaginary time
if Projector and L, == 1 and
n. = stabilization point in imaginary time and
the projection time 0 is within the measurement interval then
call Tau_p > MEASURE time-displaced observables (projective code)
end if
end for

> MEASURE time-displaced observables (finite temperature)

if L. == 1 and not Projector then
call Tau_m
end if

end if (Sequential)
end for (Sweeps)

call ham%Pr_obs > Calculate and write to disk measurement averages for current bin
call Nsigma%out > Write auxiliary field configuration to disk
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52: end for (Bins)

5 Data Structures and Input/Output

To manipulate the relevant physical quantities in a general model, we define a set of corre-
sponding data types. The Operator type (Sec. 5.1) is used to specify the interaction as well
as the hopping. The handling of the fields is taken care of by the Fields type (Sec. 5.2). To
define a Bravais lattice as well as a unit cell we introduce the Lattice and Unit_cell types
(Sec. 5.3). General scalar, equal-time, and time-displaced correlation functions are handled
by the Observable type (Sec. 5.4). For the projective code, we provide a WaveFunction type
(Sec. 5.5) to specify the left and right trial wave functions. The Hamiltonian is then specified
in the Hamiltonian module (Sec. 5.6), making use of the aforementioned types.

5.1 The Operator type

The fundamental data structure in the code is the Operator. It is implemented as a Fortran
derived data type designed to efficiently define the Hamiltonian (2).

Let the matrix X of dimension Ng;;, X Ng;;, stand for any of the typically sparse, Hermitian
matrices T*®), V(k) and 1) that define the Hamiltonian. Furthermore, let {21, , 25} denote
the subset of N indices such that

#0 ifx;ye{zla'”zN}
Xy {: 0 otherwise. (118)
Usually, we have N < Ny;,,. We define the N x Ng;,, matrices P as
Pix=0zx, (119)
wherei €[1,--- ,N]and x € [1,-:,Ngy]- The matrix P selects the non-vanishing entries of
X, which are contained in the rank-N matrix O defined by:
x=PToP, (120)
and
N N
Xy =D POy = ».5,,0;6, , . (121)
i,j i,j

Since the P matrices have only one non-vanishing entry per column, they can conveniently be
stored as a vector P, with entries
b, =z;. (122)

There are many useful identities which emerge from this structure. For example:

e (pTopP)"
X _ ,pTopP _ ( _ T(,0__
X=ePOP=" ———=1+P (e°—1)P, (123)
n=0
since
PPT =1y,y. (124)

In the code, we define a structure called Operator that makes use of the properties de-
scribed above. This type Operator bundles the several components, listed in Table 2 and
described in the remaining of this section, that are needed to define and use an operator ma-
trix in the program.
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Variable Type Description

Op_XUN int Effective dimension N

Op_X%0 cmplx Matrix O of dimension N x N

Op_X%P int Matrix P encoded as a vector of dimension N

Op_Xg cmplx Coupling strength g

Op_X%g_t cmplx Time dependent coupling strength g(7)

Op_X’alpha cmplx Constant a

Op_X%type int Sets the type of HS transformation (1: Ising; 2: discrete
HS for perfect-square term; 3: continuous real field)

Op_X%diag logical True if O is diagonal

Op_X%U cmplx Matrix containing the eigenvectors of O

Op_X%E dble Eigenvalues of O

Op_X%N_non_zero int Number of non-vanishing eigenvalues of O

Op_X%M_exp cmplx Stores M_exp(:, :,s) = e89(type)0C.:)

Op_X%E_exp cmplx Stores E_exp(:,s) = eS?(type)E()

Table 2: Member variables of the Operator type. In the left column, the letter X is
a placeholder for the letters T and V, indicating hopping and interaction operators,
respectively. The highlighted variables must be specified by the user. M_exp and E_-
exp are allocated only if type =1, 2.

5.2 Handling of the fields: the Fields type

The partition function (see Sec. 2.1) consists of terms which, in general, can be written as
ye8?X where X denotes an arbitrary operator, g is a constant, and y and ¢ are functions of a
complex field f. The ALF includes three different types of fields:

t=1 This type is for an Ising field, therefore y =1 and ¢ =Re f = %1,

t=2 This type is for the generic HS transformation of Eq. (12) where y = y(Ref) and
¢ = n(Ref) with Re f = +1,+2 [see Eq. (13)],

t=3 This type is for continuous fields, i.e., y =1 and ¢ =Re f € R.

t=4 For this type both real and imaginary part of the field ¢ is used. It is limited to the
formy =vy(Ref) and ¢ = 4/1+Imf n(Ref), with Ref = +1,+2 and Im f € R. This
type is useful for simulating terms of the form: g(1 + Z)0? where in a basis where
Z|f) =Imf|f) with Im f € R.

For such auxiliary fields a dedicated type Fields is defined, whose components, listed in
Table 3, include the variables Field%f and FieldYt, which store the field values and types,
respectively, and functions such as Field%f1ip, which flips the field values randomly. Before
using this variable type, the routine Fields_init (Amplitude) should be called (its argument
is optional and the default value is of unity (see Sec. 2.2.1), in order for internal variables such
as n and vy [see Eq. (13)] to be initialized.

5.3 The Lattice and Unit_cell types

ALF’s lattice module can generate one- and two-dimensional Bravais lattices. Both the lattice
and the unit cell are defined in the module lattices_v3_mod.F90 and their components are
detailed in Tables 4 and 5. As its name suggest the module Predefined_Latt_mod.F90 also
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provides predefined lattices as described in Sec. 8.1. The user who wishes to define his/her
own lattice has to specify: 1) unit vectors a; and a,, 2) the size and shape of the lattice,
characterized by the vectors L; and L, and 3) the unit cell characterized be the number of
orbitals and their positions. The coordination number of the lattice is specified in the Unit_-
cell data type. The lattice is placed on a torus (periodic boundary conditions):

Civr, =Cirp, =€ - (125)

The function call

Call Make_Lattice( L1, L2, al, a2, Latt )

generates the lattice Latt of type Lattice. The reciprocal lattice vectors g ; are defined by:

a; g] :27(751',]', (126)
and the Brillouin zone BZ corresponds to the Wigner-Seitz cell of the lattice. Withk =Y. a;8;,

the k-space quantization follows from:

Ly-g, Ll‘gz][al] [n}
=2 127
[Lz'gl Ly-g5 |2 Tlm (127)
such that
k =nb; + mb,, with (128)
21
b, = (Ly-82)81—(L2-81)82],
' g0 50— U s g L2 8281~ (g
21
b, [(L,-81)8:—(L1-82)81]- (129)

T (L80T8 — Ly -85)(Is - 81)

The Lattice module also handles the Fourier transformation. For example, the subroutine
Fourier_R_to_K carries out the transformation:

1

N, unit-cell

S(k,:,::)= e_ik'(i_j)S(i—j,:,:,:) (130)

i,j
and Fourier_ K_to_R the inverse Fourier transform

1

S(r,:::)= e*TS(k, ). (131)

Nunit—cell keBZ
In the above, the unspecified dimensions of the structure factor can refer to imaginary-time
and orbital indices.

The position of an orbital i is given by R; + 8;. R; is a point of the Bravais lattice that
defines a unit cell, and &; labels the orbital in the unit cell. This information is stored in the
array Unit_cell’,0rb_pos detailed in Table 5.

The total number of orbitals is then given by Ndim=Lattice’N*Unit_cell’Norb. To keep
track of the orbital and unit cell structure, it is useful to define arrays List (Ndim,2) and
Inv_list(Latt%N, Unit_cell’Norb). For a superindex x = (i,n) labeling the unit cell, i,
and the orbital, n, of a site on the lattice, we have List(x,1)=1i, List(x,2)=n and Inv_-
list(i,n)=x.
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5.4 The observable types Obser_Vec, Obser_Local and Obser_Latt

Our definition of the model includes observables [Eq. (28)]. We define two observable types:
Obser_vec for an array of scalar observables such as the energy, and Obser_Latt for correla-
tion functions that have the lattice symmetry. In the latter case, translation symmetry can be
used to provide improved estimators and to reduce the size of the output. We also obtain im-
proved estimators by taking measurements in the imaginary-time interval [LOBS_ST, LOBS_EN]
(see the parameter file in Sec. 5.7.1) thereby exploiting the invariance under translation in
imaginary-time. Note that the translation symmetries in space and in time are broken for a
given configuration C but restored by the Monte Carlo sampling. In general, the user defines
size and number of bins in the parameter file, each bin containing a given amount of sweeps.
Within a sweep we run sequentially through the HS and bosonic fields, from time slice 1 to
time slice Ly.oqer and back. The results of each bin are written to a file and analyzed at the
end of the run.

To accomplish the reweighting of observables (see Sec. 2.1.3), for each configuration the
measured value of an observable is multiplied by the factors ZS and ZP:

ZS =sgn(C), (132)
@)
Zp=— (133)
Re [e—s(c)]

They are computed from the Monte Carlo phase of a configuration,

e—S(C)

o

phase =

which is provided by the main program. Note that each observable structure also includes the
average sign [Eq. (29)].

5.4.1 Scalar observables

Scalar observables are stored in the data type Obser_vec, described in Table 6. Consider a
variable Obs of type Obser_vec. At the beginning of each bin, a call to Obser_Vec_Init inthe
module observables_mod.F90 will set 0bs%N=0, Obs’Ave_sign=0 and 0bs%0bs_vec (:)=0.
Each time the main program calls the routine Obser in the Hamiltonian module, the counter
Obs%N is incremented by one, the sign [see Eq. (27)] is accumulated in the variable Obs%Ave_-

sign, and the desired observables (multiplied by the sign and Ree_s(c) see Sec. 2.1.2) are

SO ]?
accumulated in the vector Obs%0bs_vec. At the end of the bin,[a ca%l to Print_bin_Vec
in module observables_mod.F90 will append the result of the bin in the file File_Vec_scal.
Note that this subroutine will automatically append the suffix _scal to the the filename File_-
Vec. This suffix is important to facilitate automatic analyses of the data at the end of the run.
Furthermore, the file File_Vec_scal_info is created (if it does not exist yet), which contains a

string that specifies how to analyze the observable and an optional description.

5.4.2 Local observables

Local observables are stored in the data type Obser_Local described in Table 7. This data
structure is useful for dealing with local observables of the form (A)l-,a, where i is a lattice site
and a an orbital index. No translation symmetry is implied such that it is possible to use it in
conjunction with pinning fields [13]. Note that this routine is only implemented for equal-time
correlation functions.
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Consider a variable Obs of type Obser_local. At the beginning of each bin a call to
Obser_Latt_Init in the module observables_mod.F90 will initialize the elements of Obs
to zero. Each time the main program calls the Obser routines at time slice T one accumu-

lates ((éi,a(T)))Cﬁ(sc()m] sgn(C) in Obs%0bs_latt(i,1,a) At the end of each bin, a call to

Print_bin_Local in the module observables_mod.F90 will append the result of the bin
in the specified file Obs%File_Latt. The routine does not carry out a Fourier transforma-
tion and prints the data in real space. We have adopted the following naming conventions:
For equal-time observables, defined by having the second dimension of the array Obs%0bs_-
local(i, T, a) setto unity, the routine Print_bin_Latt attaches the suffix eq to Obs%File_-
Latt. Time displaced local observables are not yet implemented. Furthermore, Print_bin_-
Latt will create a corresponding info file with suffix eq_info, if not already present. The info
file contains the channel, number of imaginary time steps, length of one imaginary time step,
unit cell and the vectors defining the Bravais lattice.

5.4.3 Equal-time and time-displaced correlation functions

The data type Obser_latt (see Table 8) is useful for dealing with both equal-time and imaginary-
time-displaced correlation functions of the form:

Z etk (i=) ((éi,a(T)éj,/j) - (éi,a>< Aj,/3>) > (135)

ij

S a,f (k, T) =

unit-cell

where a and 3 are orbital indices and i and j lattice positions. Here, translation symmetry of
the Bravais lattice is explicitly taken into account. The correlation function splits in a correlated

part ng’;r)(k, 7) and a background part Sébzcm(k):

S(corr)(k )= —lk (i J)( a(T) ) (136)
Nunlt cell ij
back —tk-(i—j) (A o
( ac )(k) — Ze ik-(i J)<Oi,a)< j,[5>
Numt cell ij (137)

unit-cell (éa> (éﬁ> 5(k) P

where translation invariance in space and time has been exploited to obtain the last line. The
background part depends only on the expectation value (O, ), for which we use the following

estimator 1

(0,) = (Oi ) - (138)

N,

unit-cell

Consider a variable Obs of type Obser_latt. At the beginning of each bin a call to 0b-
ser_Latt_Init in the module observables mod.F90 will initialize the elements of Obs

to zero. Each time the main program calls the Obser or ObserT routines one accumulates
—S(0) —S(0)

((Ol (10 ﬁ»CW sgn(C) in 0bs%0bs_latt (i—j, T,a, B) and ((O; O‘))CRe[ O] -sgn(C)
in Obs%0bs_lattO(a). At the end of each bin, a call to Print_bin_Latt in the module ob-
servables_mod.F90 will append the result of the bin in the specified file Obs%File_Latt.
Note that the routine Print_bin_Latt carries out the Fourier transformation and prints the
results in k-space. We have adopted the following naming conventions. For equal-time ob-
servables, defined by having the second dimension of the array Obs%0bs_latt(i—j,7,a, 3)
set to unity, the routine Print_bin_Latt attaches the suffix eq to Obs%File_Latt. For time-
displaced correlation functions we use the suffix tau. Furthermore, Print_bin_Latt will
create a corresponding info file with suffix eq info or tau_info, if not already present. The
info file contains the channel, number of imaginary time steps, length of one imaginary time
step, unit cell and the vectors defining the Bravais lattice.
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5.5 The WaveFunction type

The projective algorithm (Sec. 3) requires a pair of trial wave functions, |Wr ), for which
there is the dedicated WaveFunction type, defined in the module WaveFunction_mod as de-
scribed in Table 9.

The module WaveFunction_mod also includes the routine WF_overlap(WF_L, WF_R, Z_-
norm) for normalizing the right trial wave function WF_R by the factor Z_norm, such that

(O [¥rR) = 1.

5.6 Specification of the Hamiltonian: the Hamiltonian module

The module Hamiltonian_main in Prog/Hamiltonian_main_mod.F90 defines the interface
for all model-specific variables and subroutines needed by the Monte Carlo algorithm, like
the hopping, the interaction, the observables, the trial wave function, and optionally updating
schemes (see Sec. 2.2). All Hamiltonians (which is the term we are using for an encapsulated
model definition) are derived from this main Hamiltonian. In order to implement a new user-
defined Hamiltonian, one only has to set up a single submodule of the module Hamiltonian_
main. Accordingly, this documentation focuses almost entirely on this module and how to
derive a new model from it. The remaining parts of the code may hence be treated as a black
box.

Table 10 shows all variables declared in Hamiltonian_main, they fully define the model.
Note that the procedures listed in Table 11 are part of the variable ham.

To define a new Hamiltonian called New model, one has to do two things:

1. Add a new line New_model to the file Prog/Hamiltonians.1list
2. Write the new submodule in Prog/Hamiltonians/Hamiltonian_New_model _smod.F90

In this new submodule the user can redefine the procedures listed in Table 11, those have
to be bound to a new type, which is derived from the Hamiltonian object ham_base. The sub-
module has access to all variables defined in Hamiltonian_main, while all variables defined
in the submodule are encapsulated. To expose the new Hamiltonian, the user has to define

module Subroutine Ham_Alloc_New_model
allocate(ham_New_model: :ham)
end Subroutine Ham_Alloc_New_model

where ham_New_model is the name of the new type derived from ham_base. The rest of the
linking is done automatically through the entry in Prog/Hamiltonians.list.

Hamiltonian variables to be read in through the parameters file should be written in a
specific format, since they will be parsed at compile time and subroutines for reading from
parameters file and writing the HDFS5 file will be automatically generated. For each namelist,
there has to be block of this form:

I#PARAMETERS START# <namelist_name>
<varl_type> :: <varl_name> = <varl_default> ! <varl_description>
<var2_type> :: <var2_name> = <var2_default> ! <var2_description>

'#PARAMETERS END#

Each of those “namelist specifications” starts with a line containing #PARAMETERSSTART#
and end with a line containing #PARAMETERSEND#. The namelist name has to be written after
#PARAMETERSSTART# on the same line. The variable type specification <varX_type> should
be either real, integer, character or logical, declared as real (Kind=Kind(0.4d0)),
integer, character(len=64) or logical respectively. Each variable needs to have a de-
fault value. The description of the parameters is optional. A variable can be commented out,
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but will still be parsed to be read from parameters. This is to facilitate reading of variables
that are already defined in Hamiltonian_main, e.g. N_SUN.
For example, a namelist called my_parameter_list containing N_SUN and Beta could
look like:
'#PARAMETERS START# my_parameter_list
!Integer :: N_SUN = 2
real(Kind=Kind(0.d0)) :: Beta = 5.d0 ! Inverse temperature
| #PARAMETERS END#

The parsing script parse_ham. py in Prog/ has the option --test_file for testing the namelist
specifications, e.g. calling:

./parse_ham.py --test_file Hamiltonians/Hamiltonian_New_model_smod.F90

prints out the results from parsing for manual checking. We recommend doing this after every
change in the namelist.

During compilation, the file Hamiltonian_New_model _read_write_parameters.F90 con-
taining the subroutines read_parameters and write_parameters_hdf5 is generated auto-
matically. The former subroutine can be called in ham_set, while the latter has to be bound
to ham_New_model through:

#ifdef HDF5
procedure, nopass :: write_parameters_hdf5

#endif

To help creating a new Hamiltonian, we provide a template Prog/Hamiltonians/Hamiltonian_
##NAME## _smod . F90, which can be copied to Prog/Hamiltonians/Hamiltonian_New_model _-
smod . F90 before being modified. To simplify the implementation of a new Hamiltonian, ALF
comes with a set of predefined structures (Sec. 8) which the user can combine together or use
as templates.

In order to specify a Hamiltonian, we have to set the matrix representation of the imaginary-
time propagators, e 27T e/ =AUV ang e=A7sk:I™ | that appear in the partition func-
tion (18). For each pair of indices (k,s), these terms have the general form

Matrix Exponential = e8 #(type)X (139)

In case of the perfect-square term, we additionally have to set the constant a, see the definition
of the operators V& in Eq. (4). The data structures which hold all the above information are
variables of the type Operator (see Table 2). For each pair of indices (k,s), we store the
following parameters in an Operator variable:

* P and O defining the matrix X [see Eq. (120)],
* the constants g, a,

* optionally: the type type of the discrete fields ¢.

The latter parameter can take one of three values: Ising (1), discrete HS (2), and real (3), as
detailed in Sec. 5.2. Note that we have dropped the color index o, since the implementation
uses the SU(N;) invariance of the Hamiltonian.

Accordingly, the following data structures fully describe the Hamiltonian (2):

* For the hopping Hamiltonian (3), we have to set the exponentiated hopping matrices
—ATT®)
e :

In this case X*) = T() and a single variable Op_T describes the operator matrix
Naim
(Z &t T§’;S)éys) , (140)
X’y

44



SciPost Physics Codebases Submission

where k =[1,M;] and s = [1, N ]. In the notation of the general expression (139), we
set g = —A7 (and a = 0). In case of the hopping matrix, the type variable takes its
default value Op_T%type = 0. All in all, the corresponding array of structure variables
is Op_T(MT s Nfl ).

* For the interaction Hamiltonian (4), which is of perfect-square type, we have to set the
. . AU, vk
exponentiated matrices eV ~ATUkM=V
In this case, X = V() and a single variable Op_V describes the operator matrix:

Naim
KZ éjgsv)gf;)eys) + aks] : (141)

X,y

where k = [1,My] and s = [1,Np], § = /—A7tU; and a = ay,. The discrete HS
decomposition which is used for the perfect-square interaction, is selected by setting the
type variable to Op_V/type = 2. All in all, the required structure variables Op_V are
defined using the array Op_V (M ,Ng).

* For the bosonic interaction Hamiltonian (5), we have to set the exponentiated matrices
—Ats; I%s)
e kot

In this case, X = I**) and a single variable Op_V then describes the operator matrix:

Nim
At 7(ks)a
(Z cxslqu)cys) , (142)

XY

where k = [1,M;] and s = [1,Nf] and g = —A7 (and a = 0). It this operator couples
to an Ising field, we specify the type variable Op_V%type=1. On the other hand, if it
couples to a scalar field (i.e. real number) then we specify Op_V/%type=3. All in all, the
required structure variables are contained in the array Op_V (M;,Ng).

* In case of a full interaction [perfect-square term (4) and bosonic term (5)], we define
the corresponding doubled array Op_V (M, +M;,Ng) and set the variables separately for
both ranges of the array according to the above.

5.6.1 Flavor symmetries

This code allows the use of time-reversal or particle-hole symmetry to accelerate the algorithm
by only explicitly calculating a subset of flavors and reconstructing the complement by symme-
try. Here, a pair of flavors (ng, i) are related by a unitary or anti-unitary symmetry, including
particle-hole transformations, such that

U0p_V(i,n0)U =0p_V(i,fig); U '0p_T(i,ng)U =0p_T(i,fq) (143)

for any given i. Note that Op_V(i,nq) includes a constant shift a to absorb contributions from
the commutator in case of particle-hole symmetries. For example, the particle-hole symmetry
requires a non-zero shift @ = 1/2 in the M, decoupling of the Hubbard interaction to map the
upspin to the downspin. This acceleration is activated by allocating Calc_F1 in Ham_set and
setting the ‘active’ flavors ng to . True. and the symmetry-related flavors i1 to .False..
This symmetry allows one to reconstruct one flavor, say g, from the other, ng. For uni-
tary symmetries, the weight is given by Z(7g) = Z(np), while anti-unitary symmetries lead to
Z(ng) = Z(ng)*. This relation has to be provided by the user in weight_reconstruction.
Up to entry, all weights Z(ng) have be explicitly calculated by ALF and the user has to fill
all ‘inactive’ flavors g of the array Z. Similarly, the subroutines GR_reconstruction and
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GRT_reconstruction have to be overridden to provide the symmetry reconstruction of the
‘inactive’ flavors ng of the equal-time and time-displaced Green functions out of ng, respec-
tively.

Finally we note that if the projective algorithm is used then the trial wave function also
has to satisfy the aforementioned symmetry. In particular, assume that the trial wave function
corresponds to the ground state of a single particle Hamiltonian, Hy(ng), then we will require
that

U A (ng)U = He(fig) (144)

5.6.2 Time-dependent Hamiltonians

The Hamiltonian can also include an imaginary time dependency. In that case the imaginary
time evolution is given by

B s
Z=n (Te_fo dmm) = (145)
Ny My L
My Lryotter fl My LTrotter -
N, —Atg) Ura
Ze_SO({Si’T}) ( l_[ Yk T) e = P m s Tk, o
¢ k=1 7=1
Na Lyotter Neol
X l_[ det| 1+ B’L:S) 4 O(A’tz)
s=1 =1
with . ) )
\4 T .
B(S) = l_[ e\/mnk,TV(kS) l_[ e—Aq:gi’Tsk,TI(ks) l_[ e_ATgIZ"TT(kS) (146)
T
k=1 k=1 o1

In order to recover the partition function of a time independent Hamiltonian, given in Eq. (18),
one has to set gi{f - 1withX=V,I,T.

By default a constant coupling strength g is assumed. In order to include an imaginary
time dependency for a given operator the array Op_X’g_t (Ltrot) has to be allocated.

In thermodynamic equilibrium, the Hamiltonian is time independent, and the imaginary
time propagation is by definition Hermitian. In this case, the asymmetric and symmetric Trot-
ter decomposition differ by symmetry: for the symmetric (asymmetric) decomposition, the
imaginary time propagator is (non-) hermitian. For time dependent Hamiltonians, this dis-
tinction cannot be made since generically,

Te—ffdﬂft(r) + (Te—ff dT'}-A[(T))T (147)

Nevertheless, to guarantee consistency with the rest of the code, we generalize the Trotter
decompositions presented in Sec. 2.3 as follows. The operators T; and O; defined in Eq. (84)
and (85) acquire an imaginary time index that encodes the time dependence of the coupling
constants as explicitly shown above. Since we only allow for a time variation of the coupling
constants, the very same Trotter decomposition that we use to define T; can be used to for
time dependent problems.

Asymmetric Trotter The asymmetric Trotter decomposition, estimates the imaginary time
propagation as

LTrotter NO . NT .
Unpprox = | | | | e 470 | | e 27T ). (148)
=1 \li=1 =1
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L=4,U/t =4, Art =0.0625, Symm=.T. L=4,U/t=4,Art =0.0625, Symm=.T.
~0.82 e 3.7 : : : :
diabatic —m— 2
0825 - ® Hamilton —e— 1 36 f e * . v R ROREOD
m
_0.83 | Exact | 35 | i
= —0.835 |- . IR i
= - 331 1
~ 5 .
R 084 e B @ g9l |
—0.845 | 1
081 . 31 ¢ Adiabatic —a— |
—0.85 ® o 8% mw ®w ®m ®m = 4 3L Hamilton —e— |
- - Exact
70»855 1 1 1 1 2.9 1 1 1 1
0 2 4 6 8 10 0 2 4 6 8 10
ot ot

Figure 5: Simulations of the Hubbard model with adiabatic (Fig. 8) switching and
Hamilton propagation. Left: Energy. Right: Spin-spin correlations at wave vector
(7, ). The Exact results stem from [144].

Symmetric Trotter For the symmetric Trotter, we use

LTrotter N T —1

1
n _bt _atg _AT g
Unpprox = | | | | e~ e |em 2 e | | e e | x

=1 j=1 j=Np—1
No—1 1
AT A A AT A
| | e_TTOi,’r e_ATONo,T | | e_TTOi,T X

i=1
Np—1 1

AT 4 AT 4 AT 4
| | e~ lic |7 Ny | | e~ 7 lix
j=1

J

Il

3

|
—

As for the imaginary time independent Hamiltonians, we save computational resources by
approximating:

Ny—1 1 Np—1 1
[0 et [ [T 0o | [Te¥8 et [ [] % |
j=1 Jj=Nr—1 Jj=1 Jj=Nr—1

Nr—1 X . . . 1 . .

l_[ e—%(Tj,wl“‘Tj,r) e_%(TNT,T-FlJ'_TNT,T) l_[ e_%(Tj,rJrl"—Tj,‘r) (149)
=1 j=N;—1

We conclude this section by comparing the generic projector QMC code where the imagi-
nary time propagation is carried out with the Hamiltonian and the adiabatic scheme in which
the interaction is adiabatically switched on according to Fig. 8.

5.7 File structure

The code package, summarized in Table 12, consists of the program directories Prog/, Libraries/,
Analysis/, and the directory Scripts_and_Parameters_files/, which contains support-
ing scripts and, in its subdirectory Start, the input files necessary for a run, described in the
Sec. 5.7.1 as well as Mathematica/ that contains Mathematica notebooks to evaluate higher
order correlation functions with Wicks theorem as described in Appendix A.
The routines available in the directory Analysis/ are described in Sec. 6.3, and the testsuite
in Sec. 6.2.

Below we describe the structure of ALF’s input and output files. Notice that the input/out-
put files for the Analysis routines are described in Sec. 6.3.
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5.7.1 Input files

The package’s two input files are described in Table 13. The parameter file Start/parameters
has the following form — using as an example the Hubbard model on a square lattice (see
Sec. 9.1 for the general SU(N) Hubbard and Sec. 7 for a detailed walk-through on its plain
vanilla version):

1
! Input variables for a general ALF run
S
&VAR_ham_name !'l Use Hamiltonian defined in
ham_name = "Hubbard" ! Prog/Hamiltonians/Hamiltonian_{ham_name}_smod.F90
/
&VAR_lattice !'! Parameters defining the specific lattice and base model
L1 =6 ! Length in direction a_1
L2 =6 ! Length in direction a_2
Lattice_type = "Square" ! Sets a_1 = (1,0), a_2=(0,1), Norb=1, N_coord=2
Model = "Hubbard" ! Sets the Hubbard model, to be specified in &VAR_Hubbard
/
&VAR_Model_Generic !l Common model parameters
Checkerboard = .T. ! Whether checkerboard decomposition is used
Symm = .T. ! Whether symmetrization takes place
N_SUN =2 ! Number of colors
N_FL =1 ! Number of flavors
Phi_X = 0.d0 ! Twist along the L_1 direction, in units of the flux quanta
Phi_Y = 0.d0 ! Twist along the L_2 direction, in units of the flux quanta
Bulk = .T. | Twist as a vector potential (.T.); at the boundary (.F.)
N_Phi =0 ! Total number of flux quanta traversing the lattice
Dtau = 0.1d0 | Thereby Ltrot=Beta/dtau
Beta = 5.d0 ! Inverse temperature
Projector = .F. ! Whether the projective algorithm is used
Theta = 10.d0 ! Projection parameter
/
&VAR_QMC 'l Variables for the QMC run
Nwrap = 10 ! Stabilization. Green functions will be computed from
! scratch after each time interval Nwrap*Dtau
NSweep = 20 ! Number of sweeps
NBin =5 ! Number of bins
Ltau =1 ! 1 to calculate time-displaced Green functions; O otherwise
LOBS_ST =0 ! Start measurements at time slice LOBS_ST
LOBS_EN =0 ! End measurements at time slice LOBS_EN
CPU_MAX = 0.0 ! Code stops after CPU_MAX hours, if O or not
! specified, the code stops after Nbin bins
Propose_S0O = .F. ! Proposes single spin flip moves with probability exp(-S0)
Global_moves = .F. ! Allows for global moves in space and time
N_Global =B ! Number of global moves per sweep
Global_tau_moves = .F. ! Allows for global moves on a single time slice.
N_Global_tau =1 ! Number of global moves that will be carried out on a
! single time slice
Sequential = .T. ! Flag for sequential moves
Nt_sequential_start = 0 ! One can combine sequential & global moves on a time slice
Nt_sequential_end = -1 ! The program then carries out sequential local moves in the
| range [Nt_sequential_start, Nt_sequential_end] followed by
! N_Global_tau global moves
Langevin = .F. ! Langevin update
Delta_t_Langevin_HMC = 0.01 ! Default time step for Langevin and HMC updates
Max_Force = 1.5 ! Max force for Langevin
HMC = .F. ! Flag for hybrid molecular dynamics update
N_HMC_sweeps =1 ! Number of hybrid molecular dynamic updates between
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Amplitude

&VAR_errors
n_skip =1
N_rebin 1
N_Cov 0

N_auto
N_Back

N_BZ_Zones
/

&VAR_TEMP

Ngamma
Om_st
Om_en
NDis
Nbins
Nsweeps
NWarm
N_alpha
alpha_st
R
Checkpoint

Tolerance

Stochastic

&VAR_Hubbar
Mz

Continuous
ham_T
ham_chem
ham_U
ham_T2
ham_U2
ham_Tperp

Extended_zone

d

Leapfrog_steps

N_exchange_steps
N_Tempering_frequency

mpi_per_parameter_set
Tempering_calc_det

&VAR_Max_Stoch

400
-10.d0
10.d0
2000
250

70

20

14
1.d0
1.2d0

0.1d0

.do
.do
.do
.do
.do
.do

[ NI S N o S

1]
o

Submission

sequential sweep
Number of leapfrog iteratioms

! Width of the box distribution for update of

type t=3,4 fields. Defaults to 1.0.

Variables for analysis programs

Number of bins that to be skipped

Rebinning

If set to 1 covariance computed for non-equal-time
correlation functions

If > 0 triggers calculation of autocorrelation

If set to 1, substract background in correlation functions
Allows for Fourier analysis in extended zone scheme

Number of Brillouin zones that will be covered if extended
zone scheme is activated. Default = Norb

Variables for parallel tempering

Number of exchange moves [see Eq. (40)]

The frequency in units of sweeps at which the
exchange moves are carried out

Number of mpi-processes per parameter set

Specifies whether the fermion weight has to be taken
into account while tempering. The default is .true.,
and it can be set to .F. if the parameters that

get varied only enter the free bosonic action S_O

Variables for Maximum entropy

The attribute Stoch means that this parameter is

only required for the stochastic approach.

Number of delta-functions for parametrization (Stoch)
Frequency range lower bound

Frequency range upper bound

Number of boxes for histogram, frequency discretization.
Number of bins for Monte Carlo (Stoch)

Number of sweeps per bin (Stoch)

The Nwarm first bins will be omitted (Stoch)

Number of temperatures (Stoch)

Smallest inverse temperature increment for inverse (Stoch)
temperature (see above) (Stoch)

! Whether to produce dump files, allowing the simulation

to be resumed later on (Stoch)

Data points for which the relative error exceeds the
tolerance threshold will be omitted.

If true, stochastic maxent is called

If false, classic maxent is called

Variables for the specific model

! When true, sets the M_z-Hubbard model: Nf=2, demands that

N_sun is even, HS field couples to the z-component of

! magnetization; otherwise, HS field couples to the density
! Uses (T: continuous; F: discrete) HS transformation

Hopping parameter
Chemical potential
Hubbard interaction
For bilayer systems
For bilayer systems
For bilayer systems
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Description

Component

Variable Type
Field%t(1:n_op) int
Field%f(1:n_op, cmplx
1:Ltrot)

Field’)flip_proto- int
col(1:n_op)

amplitude dble
Method(arguments)

Sets the HS transformation type (1: Ising; 2: discrete HS
for perfect-square term; 3: continuous real field). The index
runs through the operator sequence

Defines the auxiliary fields. The first index runs through the
operator sequence and the second through the time slices.
For t=1, f = £1; for t=2, f = £1,+2; for t=3, f € R; and
for t=4, f € C, Real(f) =+1,+2, Im(f) € R

Gives the possibility to choose the flipping protocol of the
field for type t=4 fields. 1: real or imaginary parts of the
field are updated with 0.5 probability (default) 2: both real
and imaginary parts are updated 3: only real part 4: only
imaginary part.

Random flip width for fields of types t=3, 4, defaults to 1

Field’make(n_op,Ltrot)
Field¥%clear()
Field¥set ()
Field%flip(n,nt)

Fieldphi(n,nt)

FieldYgamma(n,nt)
Field%i(n,nt)

Field’in(Group_Comm,
In_field)

Field¥%out (Group_Comm)

Reserves memory for the field

Clears field from memory

Sets a random configuration

Flips the field values randomly for field n on time slice nt.
For t=1 it flips the sign of the Ising spin. For t=2 it ran-
domly choose one of the three other values of [. For t=3, f
= f + amplitude*(ranf() -1/2). For t=4, the real part
is flipped as for t=2, and the imaginary part as for t=3. The
specifics of the flip is encoded in the f1ip_protocol vari-
able described above.

Returns ¢ for the n-th operator at the time slice nt. For
t=1, 3 ¢ = f; for t=2 ¢ = n(Ref) ; and for t=4
¢ =+1+Imfn(Ref)

Returns vy for the n-th operator at the time slice nt For t=1,3
y =1; and for t=2,4 y = y(Re f)

Returns Field’f rounded to nearest integer (if t=1 or 2)

If the file confin_np (or confin_np.h5) exists it reads the
field configuration from this file. Otherwise if In_field is
present it sets the fields to In_field. If both confin_-
np(.h5) and In_field are not provided it sets a random
field by calling FieldY,set (). Here np is the rank number
of the process

Writes out the field configuration

Table 3: Components of a variable of type Fields named Field. The routine
Fields_init(del) should be called before the use of this variable type, since it ini-
tializes necessary internal variables such as (1), y(1) [see Eq. (13)]. Note that del
and amplitude are private variables of the fields module. The integers n_op and
Ltrot are the number of interacting operators per time slice and time slices, respec-
tively, Group_Comm (integer) is an MPI communicator defined by the main program,
and the optional In_field stores the initial field configuration.
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Variable

Type

Description

Latt%al_p, Latt%a2_p
Latt)L1_p, Latt%L2_p

Latt¥%N
Latt¥%list

Latt%invlist
Latt%nnlist

Latt¥imj

Latt%BZ1_p, Latt¥%BZ2_p
Latt)bl_p, Latt¥%b2_p
Latt¥%4listk

Latt%invlistk
Latt%bl_perp_p,
Latt)b2_perp_p

dble
dble

int
int
int
int
int
dble
dble
int
int

dble

Unit vectors a4, a,

Vectors L,, L, that define the topology of the lattice
Tilted lattices are thereby possible to implement
Number of lattice points, Ny cell

Maps each lattice point i =1, -+, Nypit.cen to a real
space vector denoting the position of the unit cell:
R; =1ist(i,1)a; +1list(i,2)a, =ija; +1ia,
Return lattice point from position: Invlist(i;, i) =1
Nearest neighbor indices: j =nnlist(i,n;,n,),
ny,ny €[—1,1], R; =R; + nya; + nya,

Rimji,j) = R; —R;, with imj,i,j € 1, -+, Nypje.cell
Reciprocal space vectors g; [See Eq. (126)]
k-quantization [See Eq. (129)]

Maps each reciprocal lattice point k =1, -+ , Nypit-cell
to a reciprocal space vector

k; =1listk(k,1)b; +1listk(k,2)b, = k;b; + k,b,
Invlistk(ky, ky) =k

Orthonormal vectors to b; (for internal use)

Table 4: Components of the Lattice type for two-dimensional lattices using as ex-
ample the default lattice name Latt. The highlighted variables must be specified by
the user. Other components of Lattice are generated upon calling: Call Make_-
Lattice(L1, L2, al, a2, Latt).

Variable Type Description
Norb int  Number of orbitals
N_coord int Coordination number

Orb_pos(1l..Norb,2[3])

dble Orbitals’ positions, measured from the lattice site

Table 5: Components of an instance Latt_unit of the Unit_cell type. The high-
lighted variables have to be specified by the user. Note that for bilayer lattices the
second index of the Orb_pos array ranges from 1 to 3.
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Name of output file
How to analyze the observable

File_Vec
analysis_mode char

char

Default value: “identity”

description(:) char

Optional description.

Arbitrary

number of 64-character lines
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Variable Type  Description Contribution

N int Number of measurements +1

Ave_sign dble Cumulated average sign [Eq. (29)]  sgn(C)

Obs_vec(:) cmplx Cumulated vector of observables e °0)

((é(i»)cm sgn(C)

Table 6: Components of a variable of type Obser_vec. The contribution listed is that

of each configuration C.

Variable Type Description Contribution

Obs%N int Number of measurements +1

Obs%Ave_sign dble Cumulated sign [Eq. (29)]  sgn(C)

Obs%0bs_latt (i, cmplx Cumulated correlation func- ({0 (7)) ¢ x
: —S(C

T,0) tion —ReEe—(s(l)] sgn(C)

Obs)File_Latt char Name of output file

Obs%Latt Lattice® Bravais lattice [Tab. 4]

Obs%Latt_unit Unit_cell® Unit cell [Tab. 5]

Obs’dtau dble Imaginary time step

Obs%Channel char Channel for Maximum En-

tropy

Table 7: Components of a variable of type Obser_local named Obs. Be aware: The
types marked with asterisks, *, are actually pointers; when the subroutine Obser_-
Latt_make creates an observable Obs, the variables Latt and Latt_unit do not
get copied but a pointer to them is stored, implying that their modification after
the creation of Obs still affects the observable. Each observable can have its own
lattice and unit-cell that can differ from the lattice and unit cell associated to the
Hamiltonian. For example, when simulation a two-dimensional Hubbard model, one
can define an observable on a one-dimensional sub-lattice. We refer the reader to
Sec. 8.4 for further discussion on this option.
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Variable Type Description Contribution
Obs%N int Number of measurements +1
ObsY%Ave_sign dble Cumulated sign [Eq. (29)]  sgn(C)
Obs%0bs_latt(i-j, cmplx Cumulated correlation func- (((A)i,a(r)éj’ﬂ))c X
T, tion [Eq. (28 9
B [ q. ( )] R[] sgn(C)
Obs%0bs_lattO(a) cmplx Cumulated expected value ({(0; 4))c X
Eq. (28 9
[Eq. (28)] R[50 sgn(C)
ObsFile_Latt char Name of output file
Obs%Latt Lattice® Bravais lattice [Tab. 4]
Obs%Latt_unit Unit_cell® Unit cell [Tab. 5]
Obs%dtau dble Imaginary time step
Obs’Channel char Channel for Maximum En-

tropy

Table 8: Components of a variable of type Obser_latt named Obs. Be aware: The
types marked with asterisks, *, are actually pointers; when the subroutine Obser_-
Latt_make creates an observable Obs, the variables Latt and Latt_unit do not
get copied but a pointer to them is stored, implying that their modification after
the creation of Obs still affects the observable. Each observable can have its own
lattice and unit-cell that can differ from the lattice and unit cell associated to the
Hamiltonian. For example, when simulation a two-dimensional Hubbard model, one
can define an observable on a one-dimensional sub-lattice. We refer the reader to
Sec. 8.4 for further discussion on this option.

Variable Type Description
WF%4P(:,:) cmplx PisanNdimXxN_part matrix, where N_part is the number of particles
WF/Degen dble It stores the energy difference between the last occupied and first un-

occupied single particle state and can be used to check for degeneracy

Table 9: Components of a variable of type WaveFunction named WF.
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Public Variable Type Description

ham class(ham_ Hamiltonian object. All model dependent proce-
base) dures are attached to this variable (see Table 11).

Op_V Operator Interaction

Op_T Operator Hopping

WF_L WaveFunction Left trial wave function

WF_R WaveFunction Right trial wave function

nsigma Fields Fields

Ndim int Number of sites

N F1 int Number of flavors

N_SUN int Number of colors

Ltrot int Total number of trotter silces

Thtrot int Number of trotter slices reserved for projection

Projector logical Enable projector code

Group_Comm int Group communicator for MPI

Symm logical Symmetric trotter

Calc_F1 logical Explicitly calculation of flavors (optional)

Private Variable Type Description

Obs_scal Obser_Vec Storage for measured scalar observables

Obs_eq Obser_Latt Storage for measured equal time correlations

Obs_tau Obser_Latt Storage for measured time displaced correlations

Table 10: List of the public and private variables declared in the module Hamilto-
nian. The highlighted variables have to be set in the subroutine ham_set.
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Procedure Description Section
Ham_Set Reads in model and lattice parameters from the 5.6, 9
file parameters. Sets the Hamiltonian, which is
commonly split up into subroutines Ham_Latt,
Ham_Hop, Ham_V and Ham_Trial
Ham_Latt: Sets the Lattice and the Unit_- 5.3,7.38.1
cell as well as the the arrays List and Inv_-
list required for multiorbital problems
Ham_hop: Sets the hopping term H; (i.e., op- 5.1, 7.4, 8.2
erator Op_T) by calling Op_make and Op_set
Ham_V: Sets the interaction term 7—ALV (i.e., op- 5.1,7.5,8.3
erator Op_V) by calling Op_make and Op_set
Ham_Trial: Sets the trial wave function for 5.5, 7.6, 8.5
the projective code |¥r; ) specified by the
Wavefunction type
Alloc_obs Assigns memory storage to the observable 5.4,7.7.1
Obser Computes the scalar and equal-time observables 5.4, 7.7.2, 8.4
ObserT Computes time-displaced correlation functions 5.4, 7.7.3, 8.4
S0 Returns the ratio eso(c’)/e—so(c) for a single spin  2.2.2
flip
Global _move_tau Generates a global move on a given time slice 2.2.3
7. This routine is only called if Global_tau_-
moves=True and N_Global_tau>0
Overide_global_- Allows setting global_tau parameters at run 2.2.3
tau_sampling_pa- time
rameters
Hamiltonian_set_- Sets the initial field configuration. This routine
nsigma is to be modified if one wants to specify the ini-
tial configuration. By default the initial config-
uration is assumed to be random
Global_move Handles global moves in time and space 2.2.4
Get_Delta_SO_- Computes AS, = Sy(C) — Sy(C’) for a global 2.2.4
global move
Init_obs Initializes the observables to zero. Usually, this
doesn’t have to be modified.
Pr_obs Writes the observables to disk by calling
Print bin of the Observables module. Usu-
ally this does not have to be modified
weight_reconstruc- Reconstructs of the weight for ‘inactive’ flavors  5.6.1
tion
GR_reconstruction Reconstructs the Green function GR for the ‘in- 5.6.1
active’ flavors
GRT_reconstruction Reconstructs the time-displaced Green functions 5.6.1

GOT and GTO

Table 11: Typebound procedures bound to type ham_base. To define a new model,
at least Ham_Set has to be overloaded in the Hamiltonian submodule. For measure-
ments Alloc_obs, Obser (and ObserT for time displaced observables) are necessary.
The other procedures are needed for optional features.
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Directory Description

Prog/ Main program and subroutines
Libraries/ Collection of mathematical routines
Analysis/ Routines for error analysis

Scripts_and_Parameters_files/  Helper scripts and the Start/ directory, which con-
tains the files required to start a run

Documentation/ This documentation

Mathematica/ Mathematica notebooks to evaluate higher order cor-
relation functions with Wicks theorem

testsuite/ An automatic test suite for various parts of the code

Table 12: Overview of the directories included in the ALF package.

File Description

parameters Defines which Hamiltonian to use and sets the parameters for:
lattice, model, QMC process, and error analysis

seeds List of integer numbers to initialize the random number generator and
to start a simulation from scratch

Table 13: Overview of the input files required for a simulation, which can be found
in the subdirectory Scripts_and_Parameters_files/Start/.
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The program allows for a number of different updating schemes. If no other variables are
specified in the VAR_QMC name space, then the program will run in its default mode, namely
the sequential single spin-flip mode. In particular, note that if Nt_sequential_start and
Nt_sequential_end are not specified and that the variable Global_tau_moves is set to true,
then the program will carry out only global moves, by setting Nt_sequential_start=1 and
Nt_sequential_end=0.

5.7.2 Output files — observables

The standard output files are listed in Table 14 and Table 15 for plain-text and HDF5 output,
respectively. Notice that, besides these files, which contain direct QMC outputs, ALF can also
produce a number of analysis output files, discussed in Sec. 6.3.

For converting plain-text output to HDF5, see Sec. 6.6.

The output of the measured data is organized in bins. One bin corresponds to the arith-
metic average over a fixed number of individual measurements which depends on the chosen
measurement interval [LOBS_ST,LOBS_EN] on the imaginary-time axis and on the number
NSweep of Monte Carlo sweeps. If the user runs an MPI parallelized version of the code, the
average also extends over the number of MPI threads.

File Description

info Summary after completion of the simulation, including param-
eters of the model and the QMC run and simulation metrics
(precision, acceptance rate, wallclock time)

X_scal Results of equal-time measurements of scalar observables.
The placeholder X stands for the observables Kin, Pot, Part,
and Ener

X_scal_info Info on how to analyze the observable and optionally a descrip-
tion.

Y eq,Y_tau,Y_local Results of equal-time and time-displaced measurements of cor-

relation functions. The placeholder Y stands for Green, SpinZ,
SpinXY, Den, etc.

Y_eq_info,Y_tau_info, Additional info, like Bravais lattice and unit cell, for equal-time

Y_local and time-displaced observables

confout_<thread#> Output files (one per MPI instance) for the HS and bosonic con-
figuration

Table 14: Overview of the standard output files if compiled without HDF5. See
Sec. 5.4 for the definitions of observables and correlation functions and Table 15 for
HDFS5 output.

The formatting of a single bin’s output depends on the observable type, Obs_vec or Obs_
Latt:

* Observables of type Obs_vec: For each additional bin, a single new line is added to the
output file. In case of an observable with N_size components, the formatting is

N_size+l <measured value, 1> ... <measured value, N_size> <measured sign>

The counter variable N_size+1 refers to the number of measurements per line, includ-
ing the phase measurement. This format is required by the error analysis routine (see
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File Description
info Same as in Tab. 14
data.hb Contains the same information as the scalar, equal-time correla-

tion and time-displaced correlation operators as in Tab. 14, but
in one single HDF5 file. This file also includes all Hamiltonian
parameters defined as specified in Sec. 5.6 (see also Fig. 6).
Note: The parameter names in the HDF5 file are all lower case

confout_<thread#>.h5 Output files (one per MPI instance) for the HS and bosonic con-
figuration, in HDF5 format

Table 15: Overview of the standard output files if compiled with HDF5. See Sec. 5.4
for the definitions of observables and correlation functions.

data.hb

| lattice ......cviviininnnn. Attached attributes describe Bravais lattice and unit cell

D Q=Yo7 Y Attached attribute: analysis mode
o) o T= 1= il Dataset of shape (NBins, Nobs, 2)
ST =« Dataset of shape (NBins)

L Y eq Y tal..oiiiiiii i e Attached attributes: Channel, dtau
lattice ................ Attached attributes describe Bravais lattice and unit cell
obser....covviiiiinian.. Dataset of shape (NBins, Norbs, Norbs, Ntau, Nlatt, 2)
DACK .ttt e e Dataset of shape (NBins, Norbs, 2)
=5 = o Dataset of shape (NBins)

| _parameters
namelist_1................ Attached attributes are the parameters in namelist_1
namelist n................ Attached attributes are the parameters in namelist n

Figure 6: Structure of HDF5 output file data.h5. In parameters all n namelists
connected with the simulated Hamiltonian can be found.

Sec. 6.3). Scalar observables like kinetic energy, potential energy, total energy and par-
ticle number are treated as a vector of size N_size=1.

* Observables of type Obs_Latt: For each additional bin, a new data block is added to
the output file. The block consists of the expectation values [Eq. (138)] contributing
to the background part [Eq. (137)] of the correlation function, and the correlated part
[Eq. (136)] of the correlation function. For imaginary-time displaced correlation func-
tions, the formatting of the block is given by:

<measured sign> <N_orbital> <N_unit_cell> <N_time_slices> <dtau> <Channel>
do a}pha =1, N_orbital
(Og)
enddo
do i =1, N _unit_cell
<reciprocal lattice vector k(i)>
do tau = 1, N_time_slices
do alpha = 1, N_orbital
do beta = 1, N_orbital
(SO (K(i), 7))
enddo
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enddo
enddo
enddo

The same block structure is used for equal-time correlation functions, except for the
entries <N_time_slices>, <dtau> and <Channel>, which are then omitted. Using this
structure for the bins as input, the full correlation function S, g(k, 7) [Eq. (135)] is then
calculated by calling the error analysis routine (see Sec. 6.3).

6 Using the Code

In this section we describe the steps for compiling and running the code from the shell, and
describe how to search for optimal parameter values as well as how to perform the error
analysis of the data.

The source code of ALF dev. is available at https://github.com/ALF-QMC/ALF /tree/
master/ and can be cloned with git or downloaded from the repository (make sure to choose
the appropriate release).

A Python interface, pyALF, is also available and can be found, together with a number
of Jupyter notebooks exploring the interface’s capabilities, at https://github.com/ALF-QMC/
pyALF /tree/master/, with the documentation https: //alf.physik.uni-wuerzburg.de/pyalf-doc/.
This interface facilitates setting up simple runs and is ideal for setting benchmarks and getting
acquainted with ALE Some of pyALF’s notebooks form the core of the introductory part of the
ALF Tutorial, where pyALF’s usage is described in more detail.

We start out by providing step-by-step instructions that allow a first-time user to go from
zero to performing a simulation and reading out their first measurement using ALE

6.1 Quick Start

The aim of this section is to provide a fruitful and stress-free first contact with the package.
Ideally, it should be possible to copy and paste the instructions below to a Debian/Ubuntu-
based Linux shell without further thought*. Explanations and further options and details are
found in the remaining sections and in the Tutorial.

Prerequisites: You should have access to a shell and the permissions to install — or have
already installed — the numerical packages Lapack and Blas, a Fortran compiler, Python, and
the tools make and git. Alternatively, one could use this Docker image, which has ALE, pyALF
and a Jupyter server pre-installed.

The following commands can be executed in a Debian-based shell® in order to install
ALF dev. and its dependencies, run a demonstration simulation and output one of the mea-
surements performed:

sudo apt-get update

sudo apt-get install gfortran liblapack-dev python3 make git
git clone -b master https://github.com/ALF-QMC/ALF.git

cd ALF

source configure.sh GNU noMPI

make clean

make

cp -r ./Scripts_and_Parameters_files/Start ./Run && cd ./Run/

“For other systems and distributions see the package’s README.
5Avoid folder names containing spaces, which are not supported.
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$ALF_DIR/Prog/ALF.out
$ALF_DIR/Analysis/ana.out Ener_scal
cat Ener_scall

The last command will output a few lines, including one similar to:
1 -0.29821914139694449E+002 0.13032001866398857E+000

which is listing the internal energy of the system and its error.

6.2 Compiling and running

The necessary environment variables and the directives for compiling the code are set by the
script configure.sh:

source configure.sh [MACHINE] [MODE] [STAB]

If run with no arguments, it lists the available options and sets a generic, serial GNU compiler
with minimal flags -cpp -03 -ffree-line-length-none -ffast-math. The predefined
machine configurations and parallelization modes available, as well as the options for sta-
bilization schemes for the matrix multiplications (see Sec. 2.4) are shown in Table 16. The
stabilization scheme choice, in particular, is critical for performance and is discussed further
in Sec. 6.4.

In order to compile the libraries, the analysis routines and the QMC program at once, just
execute the single command:

make

Related auxiliary directories, object files and executables can be removed by executing the
command make clean. The accompanying Makefile also provides rules for compiling and
cleaning up the library, the analysis routines and the QMC program separately.

A suite of tests for individual parts of the code (subroutines, functions, operations, etc.) is
available at the directory testsuite. The tests can be run by executing the following sequence
of commands (the script configure.sh sets environment variables as described above):

source configure.sh GNU Devel noMPI
make all

mkdir testsuite/tests

cd testsuite/tests

cmake

make

ctest -VV -0 log.txt

which will output test results and total success rate.

Starting a simulation

In order to start a simulation from scratch, the following files have to be present: parameters
and seeds (see Sec. 5.7.1). To run serial simulation, issue the command

$ALF_DIR/Prog/ALF.out

A known issue with the alternative Intel Fortran compiler ifort is the handling of automatic, temporary arrays
which ifort allocates on the stack. For large system sizes and/or low temperatures this may lead to a runtime
error. One solution is to demand allocation of arrays above a certain size on the heap instead of the stack. This
is accomplished by the ifort compiler flag ~heap-arrays [n] where [n] is the minimal size (in kilobytes, for
example n=1024) of arrays that are allocated on the heap.

7Supercomputer at the Leibniz Supercomputing Centre.

8Supercomputer at the Jiilich Supercomputing Centre.
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Argument Selected feature

MACHINE

GNU GNU compiler (gfortran/mpifort) for a generic machine (default)
Intel Intel compiler (ifort/mpiifort) for a generic machine®

PGI PGI compiler (pgfortran/mpifort) for a generic machine
SuperMUC-NG Intel compiler (mpiifort) and loads modules for SuperMUC-NG’
JUWELS Intel compiler (mpiifort) and loads modules for JUWELS®

MODE

noMPI|Serial
MPI

No parallelization
MPI parallelization (default — if a machine is selected)

Tempering Parallel tempering (Sec. 2.2.5) and the required MPI as well
PARALLEL_- Run multiple independent simulations in parallel (Sec. 6.5)
PARAMS

STAB

STAB1 Simplest stabilization: UDV (QR-, not SVD-based) decompositions
STAB2 QR-based UDV decompositions with additional normalizations
STAB3 Latest, additionally separates large and small scales (default)

LOG Logarithmic storage for internal scales, increases accessible ranges

OTHER SWITCHES

Devel
HDF5

NO-INTERACTIVE

Environment
Variables

Compile with additional flags for development and debugging

Compile with HDF5 — automatically downloads and installs HDFS5 if not
present

Do not ask for user confirmation during execution of this script

These are not arguments, but rather environment variables that will be
recognized by configure.sh

ALF_FLAGS_EXT
ALF_HDF5_DIR

Hand these additional flags to the compiler

ALF usually self-compiles HDF5 and stores the library in subdirectories
of ALF/HDF5, this behavior can be changed by setting the environment
variable ALF_HDF5_DIR

Table 16: Available arguments for the script configure.sh, called before compila-
tion of the package: predefined machines, parallelization modes, and stabilization
schemes (see also Sec. 6.4).

In order to run with MPI parallelization, the appropriate MPI execution command should be
called. For instance, a program compiled with OpenMPI can be run in parallel by issuing

orterun -np <number of processes> $ALF_DIR/Prog/ALF.out

The environment variable ALF_SHM_CHUNK_SIZE_GB can be used to reduce the program’s
memory footprint by sharing memory between MPI processes on the same node. The variable,
a positive real number, defines the chunk size of the shared memory objects in units of GB.
Typical values are 1.0 or 2.0 GB, but larger values can be used, if otherwise the total number
of MPI communicators so large as to trigger MPI error messages. If ALF_SHM_CHUNK_SIZE_GB
is not defined or set to values smaller that one, then the memory is not shared between MPI
processes, which is the default behavior.
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To restart the code using the configuration from a previous simulation as a starting point,
first run the script out_to_in. sh, which copies outputted field configurations into input files,
before calling the ALF executable. This file is located in the directory $ALF_DIR/Scripts_
and_Parameters_files/Start/

Notice that, when compiled with DHF5 the code checks whether the parameters stored in
existing data files have the same values as those in the parameter file and exit with an error
when they do not.

6.3 Error analysis

The ALF package includes the analysis programs ana . out for plain text bins and ana_hdf5. out
for bins in HDF5 format. They perform the same simple error analysis and correlation function
calculations on the three observable types. To perform an error analysis based on the Jackknife
resampling method [141] (Sec. 4.1) of the Monte Carlo bins for a list of plain-text observables
run

$ALF_DIR/Analysis/ana.out <list of files>
or run
$ALF_DIR/Analysis/ana.out *

for all observables.
For analyzing observables stored in the HDF5 file data.h5, run

$ALF_DIR/Analysis/ana_hdf5.out <list of observables>
or run
$ALF_DIR/Analysis/ana_hdf5.out

for all observables.

The programs ana.out and ana_hdf5.out are based on the included module ana_mod,
which provides subroutines for reading and analyzing ALF Monte Carlo bins, that can be used
to implement more specialized analysis. The three high-level analysis routines employed by
ana_mod are listed in Table 17. The files taken as input, as well as the output files are listed
in Table 18.

The error analysis is based on the central limit theorem, which requires bins to be statisti-
cally independent, and also the existence of a well-defined variance for the observable under
consideration (see Sec. 4). The former will be the case if bins are longer than the autocor-
relation time — autocorrelation functions are computed by setting the parameter N_auto to
a nonzero value — which has to be checked by the user. In the parameter file described in
Sec. 5.7.1, the user can specify how many initial bins should be omitted (variable n_skip).
This number should be comparable to the autocorrelation time. The rebinning variable N_-
rebin will merge N_rebin bins into a single new bin. If the autocorrelation time is smaller
than the effective bin size, the error should become independent of the bin size and thereby
of the variable N_rebin. The analysis output files listed in Table 18 and are formatted in the
following way:

* For the scalar quantities X, the output files X_scalJ have the following formatting:

Effective number of bins, and bins: <N_bin - N_skip>/<N_rebin> <N_bin>
0BS : 1 <mean (X)> <error (X)>
0BS : 2 <mean(sign)> <error(sign)>

* For the equal-time correlation functions in real space, Y, the formatting of the output
files Y_eqJR follows the structure:
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Program Description

cov_vec(name) The bin file name, which should have suffix _scal, is read in, and the cor-
responding file with suffix _scalJ is produced. It contains the result of the
Jackknife rebinning analysis (see Sec. 4)

cov_eq(name) The bin file name, which should have suffix _eq, is read in, and the corre-
sponding files with suffix _eqJR and _eqJK are produced. They correspond
to correlation functions in real and Fourier space, respectively

cov_tau(name) The bin file name, which should have suffix _tau, is read in, and the direc-
tories X_kx_ky are produced for all kx and ky greater or equal to zero.
Here X is a place holder from Green, SpinXY, etc., as specified in Alloc_-
obs(Ltau) (See section 7.7.1). Each directory contains a file g_dat con-
taining the time-displaced correlation function traced over the orbitals. It
also contains the covariance matrix if N_cov is set to unity in the parameter
file (see Sec. 5.7.1). Besides, a directory X_RO for the local time displaced
correlation function is generated.
For particle-hole, imaginary-time correlation functions (Channel = "PH")
such as spin and charge, we use the fact that these correlation functions are
symmetric around T = f3/2 so that we can define an improved estimator by
averaging over 7 and 3 —17

Table 17: Overview of analysis subroutines called within ana.out and ana_-
hdf5.out.

do i =1, N_unit_cell
<r_x(i)> <r_y(i)>
do alpha = 1, N_orbital
do beta = 1, N_orbital
alpha beta Re<mean(Y)> Re<error(Y)> Im<mean(Y)> Im<error(Y)>
enddo
enddo
enddo

where Re and Im refer to the real and imaginary part, respectively.

* The format for equal time correlations in Fourier space depends upon the boolean vari-
able Extended_Zone. For Extended_Zone=.F., the format reads:

do i =1, N_unit_cell
<k _x(i)> <k_y(i)>
do alpha = 1, N_orbital
do beta = 1, N_orbital
alpha beta Re<mean(Y)> Re<error(Y)> Im<mean(Y)> Im<error(Y)>
enddo
enddo
enddo

where Re and Im refer to the real and imaginary part, respectively. The Fourier transfor-
mation is defined in Eq. 130.

For Extended_Zone=.T., the format reads:

64



SciPost Physics Codebases

Submission

File Description
Input
parameters Includes error analysis variables N_skip, N_rebin, and N_Cov (see

X_scal, Y_eq, Y_tau

Output

Sec. 5.7.1)
Monte Carlo bins (see Table 14)

X_scall

Y_eqJR and Y_eqJK

Y_eq_eJK

Y RO/g_RO
Y_kx_ky/g_kx_ky

Y_e_kx_ky/g_kx_ky

Part_scal_Auto

Jackknife mean and error of X, where X stands for Kin, Pot, Part,
or Ener

Jackknife mean and error of Y, which stands for Green, SpinZ,
SpinXY, or Den. The suffixes R and K refer to real and reciprocal space,
respectively

Jackknife mean and error of Y, which stands for Green, SpinZ,
SpinXY, or Den. The file contains the analysis in the extended zone
scheme (See Eq. 150)

Time-resolved and spatially local Jackknife mean and error of Y,
where Y stands for Green, SpinZ, SpinXY, and Den

Time resolved and k-dependent Jackknife mean and error of Y, where
Y stands for Green, SpinZ, SpinXY, and Den

Time resolved and k-dependent Jackknife mean and error of Y, where
Y stands for Green, SpinZ, SpinXY, and Den. The file contains the
analysis in the extended zone scheme (See Eq. 150)

Autocorrelation functions Sg(tay,) in the range t,, = [0,N_auto]
for the observable O

Table 18: Standard input and output files of the error analysis program ana.out.

do n =
dom =
do i
enddo
enddo
enddo

0, N_BZ_Zones -1
0, N_BZ_Zones

-1

= 1,N_unit_cell
<k_x(i) + nb1+mb 2> <k y(d) +nbl+ mb2> &
& Re<mean(Y)> Re<error(Y)> Im<mean(Y)> Im<error(Y)>

In this case, the Fourier transformation is defined as:

S(k +nb, +mby) = e iktnbrtmba)(ra=rp)g (k).

(150)
o

The positions of the orbitals, r, within the unit cell are read in from the file Y info, b,
b,, are the reciprocal lattice vectors and the Fourier transform is defined in equation
Eq. 130. The naming of the output files equally depends upon the boolean variable
Extended_Zone (see table 18).

* The imaginary-time displaced correlation functions Y are written to the output files g_RO
inside folders Y_RO, when measured locally in space; and to the output files g_kx_ky
inside folders Y_kx_ky when they are measured k-resolved (where k = (kx,ky)). The
first line of the file contains the number of imaginary times, the effective number of
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bins, 3, the number of orbitals and the channel. Both output files have the following
formatting:

do i = 0, Ltau
tau(i) <mean( Tr[Y] )> <error( Tr[Y])>
enddo

where Tr corresponds to the trace over the orbital degrees of freedom. For particle-hole
quantities at finite temperature, T runs from O to /2. In all other cases it runs from 0
to B. The above is valid for Extended_Zone=.F.. If Extended_Zone=.T. then Tr[Y]
is replaced by the Fourier transform in the extended zone scheme as defined above, but
for time-displaced correlation functions.

* The file Y_tauJK contains the susceptibilities defined as:

Norb

B
X(Q) = Z f dt ((Yn(qs T)Yn’(_qa 0)) - (Yn(q» <Yn’(_q)> 5q,0) (151)
0

n,n’=1
The output file has the following formatting:

do i = 0, Ltau
q_%, q_y, <mean(Real(chi(q)) )>, <error(Real(chi(q)))>, &
& <mean(Im (chi(q)) )>, <error(lmi (chi(q)))>
enddo

* Setting the parameter N_auto to a finite value triggers the computation of autocorrela-
tion functions Sg(tay) in the range tay, = [0,N_auto]. The output is written to the
file Part_scal_Auto, where the data in organized in three columns:

tAuto Sé(tAuto) error

Since these computations are quite time consuming and require many Monte Carlo bins,
our default is N_auto=0.

6.4 Parameter optimization

The finite-temperature, auxiliary-field QMC algorithm is known to be numerically unstable, as
discussed in Sec. 2.4. The numerical instabilities arise from the imaginary-time propagation,
which invariably leads to exponentially small and exponentially large scales. As shown in
Ref. [6], scales can be omitted in the ground state algorithm — thus rendering it very stable —
but have to be taken into account in the finite-temperature code.

Numerical stabilization of the code is a delicate procedure that has been pioneered in
Ref. [2] for the finite-temperature algorithm and in Refs. [3,4] for the zero-temperature, pro-
jective algorithm. It is important to be aware of the fragility of the numerical stabilization and
that there is no guarantee that it will work for a given model. It is therefore crucial to always
check the file info, which, apart from runtime data, contains important information concern-
ing the stability of the code, in particular Precision Green. If the numerical stabilization
fails, one possible measure is to reduce the value of the parameter Nwrap in the parameter
file, which will however also impact performance — see Table. 19 for further optimization tips
for the Monte Carlo algorithm (Sec. 4). Typical values for the numerical precision ALF can
achieve can be found in Sec. 9.1.
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Element

Suggestion

Precision Green,
Precision Phase

Should be found to be small, of order < 1078 (see Sec. 2.4)

theta Should be large enough to guarantee convergence to ground state

dtau Should be set small enough to limit Trotter errors

Nwrap Should be set small enough to keep Precisions small

Nsweep Should be set large enough for bins to be of the order of the auto-
correlation time

Nbin Should be set large enough to provide desired statistics

nskip Should be set large enough to allow for equilibration (~ autocorrela-
tion time)

Nrebin Can be set to 1 when Nsweep is large enough; otherwise, and for

testing, larger values can be used

Use the default STAB3 — newest and fastest, if it works for your model,;
alternatives are: STAB1 — simplest, for reference only; STAB2 — with
additional normalizations; and LOG - for dealing with more extreme
scales (see also Tab. 16)

For some models and systems, restricting parallelism in your BLAS
library can improve performance: for OpenBLAS try setting OPEN-
BLAS_NUM_THREADS=1 in the shell

An environment variable that sets the chunk size in GBs for the mem-
ory shared between different MPI processes on the same computing
node. By default it is zero (i.e., no sharing), but can be set to, e.g.,
1.0 or 2.0 GB or larger if, for instance, the total number of MPI com-
municators is so large as to trigger MPI error messages.

Stabilization scheme

Parallelism

ALF_SHM_CHUNK_-
SIZE_GB

Table 19: Rules of thumb for obtaining best results and performance from ALE It
is important to fine tune the parameters to the specific model under consideration
and perform sanity checks throughout. Most suggestions can severely impact perfor-
mance and numerical stability if overdone.

In particular, for the stabilization of the involved matrix multiplications we rely on rou-
tines from LAPACK. Notice that results are very likely to change depending on the specific
implementation of the library used®. In order to deal with this possibility, we offer a simple
baseline which can be used as a quick check as tho whether results depend on the library used
for linear algebra routines. Namely, we have included QR-decomposition related routines of
the LAPACK-3.7.0 reference implementation from http://www.netlib.org/lapack/, which you
can use by running the script configure.sh, (described in Sec. 6), with the flag STAB1 and
recompiling ALF'°. The stabilization flags available are described in Tables 16 and 19. The
performance of the package is further discussed in Sec. B.

6.5 Parallel parameters feature

With the compile-time option PARALLEL_PARAMS (or equivalently PP), ALF can run multiple
independent simulations in parallel. This feature is meant for utilizing the high core counts of
modern HPC systems in cases where a normal job size might be overkill for a single simulation.

The linked library should implement at least the LAPACK-3.4.0 interface.
19This flag may trigger compiling issues, in particular, the Intel ifort compiler version 10.1 fails for all optimization
levels.
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parameters
seeds
Temp_0/
parameters
Temp_1/
Lg,parameters

Figure 7: Folder structure for a parallel parameters (or Parallel Tempering) simula-
tion with 2 parameter sets.

The basic folder structure is the same as in Parallel Tempering, as sketched in Fig. 7: The root
directory contains the files parameters, seeds and directories Temp_0 to Temp_{N-13}, where
N is the number of parameter sets, i.e. different simulations. Contrary to Parallel Tempering,
in Parallel Parameters mode only mpi_per_parameter_set from the namelist VAR_TEMP is
read from ./parameters. This variable is defined as the number of availbale MPI processes
divided by N. All the rest of the parameters are read from Temp_*/parameters, which allows
to simulate completely different parameters and even different Hamiltonians.

6.6 Convert plain text bins to HDF5

The Analysis folder also contains programs for converting plain text bins to HDF5, writing
the bins from files ending in _scal, _eq, or _tau to data.h5, thereby reducing file sizes and
increasing compatibility with pyALFE.

There are a number of scripts and program:

* convert_scal.out, convert_latt.out, convert_local.out: Writing the contents
of a _scal observable, a lattice type observables (that is _eq, and _tau), or a local
observable (that is _local, and _localtau) to an HDFS5 file. E.g. writing bins from
some_obs_scal, some_obs_eq, some_obs_tau, some_obs_local and some_obs_localtau
to data.h5 is done by executing.

$ALF_DIR/Analysis/convert_scal.out some_obs_scal data.hb
$ALF_DIR/Analysis/convert_latt.out some_obs_eq data.hb
$ALF_DIR/Analysis/convert_latt.out some_obs_tau data.hb
$ALF_DIR/Analysis/convert_local.out some_obs_local data.hb
$ALF_DIR/Analysis/convert_local.out some_obs_localtau data.hb

* convert_bins.py:

— Automatically combines file parameters and the Hamiltonian used in the simula-
tion to determine Hamiltonian-specific simulation parameters and write them into
HDFS5 file.

— Calls convert_scal.out, convert_latt.out, and convert_local.out for all
observables.

— Moves the original plain text bins to a subdirectory o1d_bins or optionally removes
them.

You can also get a help text by executing:

$ALF_DIR/Analysis/convert_bins.py --help
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One can automatically convert a big number of simulations by executing,

find . -name "$ref" -execdir ${ALF_DIR}/Analysis/copy_parameters.py \;

where $ref has to be the name of an observable produced by the simulation, e.g.
Ener_scal.

* convert_batch.sh: Executes the command above.

7 The plain vanilla Hubbard model on the square lattice

All the data structures necessary to implement a given model have been introduced in the
previous sections. Here we show how to implement a new model based on the example of the
Hubbard model.

As stated in Sec. 5.6, for defining a new Hamiltonian calle New_model one needs to

1. Add a new line containing New_model to the file Prog/Hamiltonians.list

2. Write the corresponding new submodule in Prog/Hamiltonians/Hamiltonian_New -
model _smod.F90

Here our New_model will be Hubbard_Plain_Vanilla. Thereis a template Prog/Hamiltonians/
Hamiltonian_ ##NAME##_smod.F90 that can be used for creating a new model.

To get a valid Hamiltonian, one has to specify its parameters, the lattice, the hopping,
the interaction, the trial wave function (if required), and the observables. Consider the plain
vanilla Hubbard model written as:

H=—t . (& ¢ +Hc)- % Sleie, e, -ude e, as2
(i,j),0="11 i i,o

Here (i,j) denotes nearest neighbors. We can make contact with the general form of the
Hamiltonian [see Eq. (2)] by setting: Ng =2, Nooy =N_SUN =1, My =1,

—t if x, y are nearest neighbors
TJE’;S) =< —u ifx=y (153)
0 otherwise,

My = Nypjccenr Ux = %, Vx(k’S:D = 5x,y 5x,k’ V,Ef,’szz) = _5x,y5x,k: ags = 0 and M; = 0.
The coupling of the HS fields to the z-component of the magnetization breaks the SU(2) spin
symmetry. Nevertheless, the z-component of the spin remains a good quantum number such
that the imaginary-time propagator — for a given HS field - is block diagonal in this quantum
number. This corresponds to the flavor index running from 1 to 2, labeling spin up and spin
down degrees of freedom. We note that in this formulation the hopping matrix can be flavor
dependent such that a Zeeman magnetic field can be introduced. If the chemical potential is set
to zero, this will not generate a negative sign problem [74,145,146]. The code that we describe
below can be found in the submodule Prog/Hamiltonians/Hamiltonian_Hubbard_Plain_
Vanilla_smod.F90.

7.1 Defining the parameters

Defining the parameters as specified in Sec. 5.6, we arrive at:
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'#PARAMETERS START# VAR_lattice

Character (len=64) :: Model = ’’ ! Value irrelevant

Character (len=64) :: Lattice_type = ’Square’ ! Possible Values: ’Square’
Integer L1 =4 ! Length in direction a_1

Integer 0 L2 =4 ! Length in direction a_2

'#PARAMETERS END#

!#PARAMETERS START# VAR_Hubbard_Plain_Vanilla
!Integer :: N_SUN = 2

real(Kind=Kind(0.d0)) :: ham_T =1.d0 ! Hopping parameter

real (Kind=Kind(0.d0)) :: Ham_chem = 0.d0 ! Chemical potential

real (Kind=Kind(0.d0)) :: Ham_U = 4.d40 ! Hubbard interaction

real (Kind=Kind(0.d0)) :: Dtau = 0.14d0 ! Thereby Ltrot=Beta/dtau

real (Kind=Kind(0.d0)) :: Beta = 5.40 ! Inverse temperature

'logical :: Projector = .false. ! Whether the projective algorithm is used

logical :: Adiabatic = .false. ! If true and if the projector is true
! the Hubbard interaction will be ramped
! from O to Ham_U in the time interval
' 0 to theta

real (Kind=Kind(0.d0)) :: Theta = 5.40 ! Projection parameter

'logical :: Symm = .false. ! Whether symmetrization takes place

Integer :: N_part = -1 ! Number of particles in trial wave function
1

If N_part < 0 -> N_part = L1xL2/2
'#PARAMETERS END#

We can test the correct formatting of the parameters by calling:

../parse_ham.py --test_file Hamiltonian_Hubbard_Plain_Vanilla_smod.F90

7.2 Setting the Hamiltonian: Ham_set

The main program will call the subroutine Ham_set in the submodule Hamiltonian_Hubbard_
Plain_Vanilla_smod.F90 which specify the model. The routine Ham_set will first read the
parameter file parameters (see Sec. 5.7.1) Call read_parameters; then set the lattice:
Call Ham_latt; set the hopping: Call Ham_hop; set the interaction: call Ham_V; and if
required, set the trial wave function: call Ham_trial. In the subroutine Ham_set one will
equally have to specify if a symmetry relates different flavors. This functionality is described
in Sec. 5.6.1 and one enables it by allocating tine array Calc_F1.

7.3 The lattice: Ham_latt

The routine, which sets the square lattice, reads:

al p(1) = 1.0 ; al_p(2) = 0.40

a2_p(1) = 0.0 ; a2_p(2) = 1.d0

Ll p dble(L1)*al_p

L2_p dble(L2)*a2_p

Call Make_Lattice(Ll_p, L2_p, al_p, a2_p, Latt)
Latt_unityNorb = 1

Latt_unit%N_coord = 2
allocate(Latt_unit%0rb_pos_p(Latt_unit¥Norb,2))
Latt_unit}0rb_pos_p(1l, :) = [0.d40, 0.d0]

Ndim = Latt%N*Latt_unit\¥%Norb

In its last line, the routine sets the total number of single particle states per flavor and color:
Ndim = Latt¥%N*Latt unit¥%Norb.
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7.4 The hopping: Ham_hop

The hopping matrix is implemented as follows. We allocate an array of dimension 1 x Ny of
type operator called Op_T and set the dimension for the hopping matrix to N = Ng;,,- The
operator allocation and initialization is performed by the subroutine Op_make:

do nf = 1,N_FL
call Op_make(Op_T(1,nf),Ndim)
enddo

Since the hopping does not break down into small blocks, we have P = 1 and

Do nf = 1, N_FL
Do i = 1,Latt¥N
Op_T(1,nf)%P(i) = i
Enddo
Enddo

We set the hopping matrix with

Do nf = 1, N_FL
Do I =1, Latt%N
Ix = Latt¥nnlist(I,1,0)
Iy = Latt%nnlist(I,0,1)

Op_T(1,nf)%0(I, Ix) = cmplx(-Ham_T, 0.d0, kind(0.DO))
Op_T(1,nf)%0(Ix, I ) = cmplx(-Ham_T, 0.d0, kind(0.DO))
Op_T(1,nf)%0(I, Iy) = cmplx(-Ham_T, 0.d0, kind(0.DO0))
Op_T(1,nf)%0(Iy, I ) = cmplx(-Ham_T, 0.d0, kind(0.DO))
Op_T(1,nf)%0(I, I ) = cmplx(-Ham_chem, 0.d0, kind(0.DO))
Enddo
Op_T(1,nf)%g = -Dtau

Op_T(1,nf)%alpha = cmplx(0.d0,0.d0, kind(0.DO))
Call Op_set(Op_T(1,nf))
Enddo

Here, the integer function Latt%nnlist(I,n,m) is defined in the lattice module and returns
the index of the lattice site I + na, + ma,. Note that periodic boundary conditions are already
taken into account. The hopping parameter Ham_T, as well as the chemical potential Ham_-
chem are read from the parameter file. To completely define the hopping we further set: Op_-
T(1,nf)%g = -Dtau ,0p_T(1,nf)%alpha = cmplx(0.d40,0.d0,kind(0.D0)) and call the
routine Op_set (Op_T(1,nf)) so as to generate the unitary transformation and eigenvalues
as specified in Table 2. Recall that for the hopping, the variable Op_set (Op_T(1,nf))%type
takes its default value of 0. Finally, note that, although a checkerboard decomposition is not
used here, it can be implemented by considering a larger number of sparse hopping matrices.

7.5 The interaction: Ham_V

To implement the interaction, we allocate an array of Operator type. The array is called
Op_V and has dimensions Ny, X Ng = Ngim, X 2. We set the dimension for the interaction
term to N = 1, and allocate and initialize this array of type Operator by repeatedly calling
the subroutine Op_make. Here we also allow for the possibility of switching on adiabatically
the Hubbard interaction provided that Adiabatic=.true. and that we are working with
the projector method. The protocol we use is depicted in Fig. 8. Note that to trigger the
time dependence Op_V%g_t has to be allocated, and the index of the complex valued one-
dimensional array has to run from 1 to Ltrot.

Allocate(Op_V(Ndim,N_FL))
do nf = 1,N_FL
do i =1, Ndim
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—
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Figure 8: Protocol for wrapping up the Hubbard U-term for in the projective algo-
rithm. This approach has been put forward as a method to alleviate the negative sign
problem [147].

Call Op_make(Op_V(i,nf), 1)
enddo
enddo
Do nf = 1,N_FL
X =1.40
if (nf == 2) X = -1.40
Do i = 1,Ndim
Op_V(i,nf)%P(1) =1
Op_V(i,nf)%0(1,1) = cmplx(1.d0, 0.d0, kind(0.DO0))
If (Adiabatic) then
Allocate(OP_V(i,nf)%g_t(Ltrot))
Op_V(i,nf)%g_t = X*SQRT(CMPLX(DTAU*ham_U/2.d0, 0.DO, kind(0.D0)))
do nt = 1, Thtrot
Op_V(i,nf)%g_t(nt)

X*SQRT (CMPLX (DTAU*dble (nt) /dble (thtrot)* &
& ham_U/2.d0, 0.DO, kind(0.D0)))
X*SQRT (CMPLX (DTAU*dble (nt) /dble (thtrot) * &
& ham_U/2.d0, 0.DO, kind(0.D0)))

Op_V(i,nf)%g_t(Ltrot-(nt-1))

enddo
else
Op_V(i,nf)%g = X*SQRT(CMPLX (DTAU*ham_U/2.d40, 0.DO, kind(0.D0)))
endif
Op_V(i,nf)%alpha = cmplx(-0.5d0, 0.d0, kind(0.DO))
Op_V(i,nf)%type 2
Call Op_set( Op_V(i,nf) )
Enddo
Enddo

If The code above makes it explicit that there is a sign difference between the coupling of
ATU/2(¢ +a)

the HS field in the two flavor sectors. Hence, Op_V(i,nf) encodes e* intCine %) wyith
X =1 fornf =1 and X = —1 for nf = 2. Strictly speaking X can be omitted. However, it is
required when using the flavor symmetry option in the presence of particle-hole symmetry (see
Sec. 5.6.1). If the variable Adiabatic=.true. and Projector=.true. then the imaginary

time profile of the Hubbard interaction is given by Fig. 8

7.6 The trial wave function: Ham_Trial

As argued in Sec. 3.1, it is useful to generate the trial wave function from a non-interacting trial
Hamiltonian. Here we will use the same left and right flavor-independent trial wave functions
that correspond to the ground state of:

Hr=—t) [(1 + (1)) ele,, +(1-8)e,, + H.c.} =>ene.  154)

i ij
For the half-filled case, the dimerization § = 0" opens up a gap at half-filling, thus generating
the desired non-degenerate trial wave function that has the same symmetries (particle-hole
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for instance) as the trial Hamiltonian.
Diagonalization of h; ;, U'hU = Diag (el, e eNdim) with €; < €; for i < j, allows us to
define the trial wave function. In particular, for the half-filled case, we set

Do s =1, N_f1
Do x = 1,Ndim
Do n = 1, N_part
WF_L(s)%#P(x,n) = U,,
WF_R(s)¥P(x,n) = U,
Enddo
Enddo
Enddo

with N_part = Ndim/2. The variable Degen belonging to the WaveFunction type is given by
Degen= €y, 11— €y, . This quantity should be greater than zero for non-degenerate trial
wave functions.

7.7 Observables

At this point, all the information for starting the simulation has been provided. The code
will sequentially go through the operator list Op_V and update the fields. Between time slices
LOBS_ST and LOBS_EN the main program will call the routine Obser (GR,Phase,Ntau), which
handles equal-time correlation functions, and, if Ltau=1, the routine ObserT(NT, GTO, GOT,
GO0, GTT, PHASE) which handles imaginary-time displaced correlation functions.

Both Obser and ObserT should be provided by the user, who can either implement them-
selves the observables they want to compute or use the predefined structures of Chap. 8. Here
we describe how to proceed in order to define an observable.

7.7.1 Allocating space for the observables: Alloc_obs(Ltau)

For four scalar or vector observables, the user will have to declare the following:

Allocate ( Obs_scal(4) )
Do I = 1,Size(0Obs_scal,1)
select case (I)
case (1)
N = 2; Filename ="Kin"

case (2)

N = 1; Filename ="Pot"
case (3)

N = 1; Filename ="Part"
case (4)

N =1, Filename ="Ener"
case default
Write(6,*) ’ Error in Alloc_obs °’
end select
Call Obser_Vec_make(Obs_scal(I), N, Filename)
enddo

Here, Obs_scal (1) contains a vector of two observables so as to account for the x- and y-
components of the kinetic energy, for example.

For equal-time correlation functions we allocate Obs_eq of type Obser_Latt. Here we
include the calculation of spin-spin and density-density correlation functions alongside equal-
time Green functions.

Allocate ( Obs_eq(5) )
Do I = 1,Size(0Obs_eq,1)
select case (I)
case (1)
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Filename = "Green"
case (2)

Filename = "SpinZ"
case (3)

Filename = "SpinXY"
case (4)

Filename = "SpinT"
case (5)

Filename = "Den"

case default
Write(6,*) "Error in Alloc_obs"
end select
Nt =1
Channel = "--"
Call Obser_Latt_make(Obs_eq(I), Nt, Filename, Latt, Latt_unit, Channel, dtau)
Enddo

Be aware that Obser_Latt_make does not copy the Bravais lattice Latt and unit cell Latt_-
unit, but links them through pointers to be more memory efficient. One can have different
lattices attached to different observables by declaring additional instances of Type (Lattice)
and Type(Unit_cell). For equal-time correlation functions, we set Nt = 1 and Channel
specification is not necessary.

If Ltau = 1, then the code allocates space for time displaced quantities. The same struc-
ture as for equal-time correlation functions is used, albeit with Nt = Ltrot + 1 and the chan-
nel should be set. Whith Channel="PH", for instance, the analysis algorithm assumes the
observable to be particle-hole symmetric. For more details on this parameter, see Sec. 10.

At the beginning of each bin, the main program will set the bin observables to zero by
calling the routine Init_obs(Ltau). The user does not have to edit this routine.

7.7.2 Measuring equal-time observables: Obser (GR,Phase,Ntau)

Having allocated the necessary memory, we proceed to define the observables. The equal-time
Green function,

GR(x,y,0) = (¢ ¢ (155)

X,0 ;/,O' 2

the phase factor phase [Eq. (134)], and time slice Ntau are provided by the main program.

Here, x and y label both unit cell as well as the orbital within the unit cell. For the Hubbard
model described here, x corresponds to the unit cell. The Green function does not depend on
the color index, and is diagonal in flavor. For the SU(2) symmetric implementation there is
only one flavor, o = 1 and the Green function is independent on the spin index. This renders
the calculation of the observables particularly easy.

An explicit calculation of the potential energy (U >; A; 17; |) reads

Obs_scal (2)%N
Obs_scal(2)%Ave_sign
Do i = 1,Ndim

Obs_scal(2)%0bs_vec(1)= 0Obs_scal(2)%0bs_vec(1l) +(1-GR(i,i,1))*(1-GR(i,i,2))*Ham_U*ZS*ZP
Enddo

Obs_scal(2)%N + 1
Obs_scal(2)%Ave_sign + Real(ZS,kind(0.d0))

Here ZS = sgn(C) [see Eq. (27)], ZP =

Hubbard U term.
Equal-time correlations are also computed in this routine. As an explicit example, we
consider the equal-time density-density correlation:

—ReE;i(SC()C)] [see Eq. (134)] and Ham_U corresponds to the

(Ajf;) — (A;)(1;), (156)
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with

= el 6. (157)

(e

For the calculation of such quantities, it is convenient to define:
GRC(x,y,s) =5x’y—GR(y,x,s) (158)

such that GRC(x,y,s) corresponds to ((é)'(’séy’s)). In the program code, the calculation of the

equal-time density-density correlation function looks as follows:

Obs_eq(4)%N = Obs_eq(4)%N + 1 ! Even if it is redundant, each observable
! carries its own counter and sign.
Obs_eq(4)%Ave_sign = Obs_eq(4)%Ave_sign + Real(ZS,kind(0.d0))
Do I = 1,Ndim
Do J = 1,Ndim
imj = latt¥%imj(I,J)
Obs_eq(4)%0bs_Latt(imj,1,1,1) = Obs_eq(4)%0bs_Latt(imj,1,1,1) + &
& ( (GRC(I,I,1)+GRC(I,I,2)) * (GRC(J,J,1)+GRC(J,J,2)) + &
& GRC(I,J,1)*GR(I,J,1) + GRC(I,J,2)*GR(I,J,2) ) * ZP * ZS
Enddo
Obs_eq(4)%0bs_Latt0(1) = Obs_eq(4)%0bs_Latt0(1) + (GRC(I,I,1)+GRC(I,I,2))*ZP*ZS
Enddo

At the end of each bin the main program calls the routine Pr_obs (LTAU). This routine ap-
pends the result for the current bins to the corresponding file, with the appropriate suffix.

7.7.3 Measuring time-displaced observables: ObserT(NT, GTO, GOT, GOO, GTT, PHASE)

This subroutine is called by the main program at the beginning of each sweep, provided that
LTAU is set to 1. The variable NT runs from O to Ltrot and denotes the imaginary time differ-
ence. For a given time displacement, the main program provides:

GTO(x,y,s) = ((éx’s(NtAT)éj,’s(O))) = {(T éx’s(NtAT)é;s(O)))
GOT(x,y,s) =—(( ;’S(NtAT)éx’s(O))) = ((T@x’s(o)é;s(NtAT)))
GOO(x,y,s) = ((6x,s(0)€;s(0)))

(

GTT(x,y,s) = 6X,S(NtAT)6;,S(NtAT))).

¢
(159)

In the above we have omitted the color index since the Green functions are color independent.
The time-displaced spin-spin correlations 4((§;.z (T)ﬁ}‘?(O))) are then given by:

4((§f(f)§j.(0))) = (GTT(I,I,1) —GTT(I,I,2))*(G00(J,J,1) —G00(J,J,2))
— GOT(J,I,1)*GTO(I,J,1) —GOT(J,I,2) *GT0(I,J,2) (160)

The handling of time-displaced correlation functions is identical to that of equal-time cor-
relations.

7.8 Flavor symmetries: weight_reconstruction(weight), GR_reconstruction(GR),
and GRT_reconstruction(GTO, GOT)

At zero chemical potential, and for repulsive interactions, the plain-vanilla Hubbard model
enjoys a partial particle-hole symmetry which, for each HS field configuration, maps one flavor
(i.e. spin sector) onto the other:

ﬁzéjlf)_l = z*ell'Qg, . (161)

>
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Here Q is the antiferromagnetic wave vector. Note that in the presence of an orbital magnetic
field, or of twisted boundary conditions that couples symmetrically to the flavor (spin) degree
of freedom, the anti-unitarity of the transformation is required. Aa a consequence of this
symmetry, for a given HS field configuration the following holds for the equal-time Green
function.

GO0 Cx,y, 1) = (¢, (0)¢) (0))) = € @72 ((&] (0)¢, ,(0))
=08,y —elly—)Q GOO(y,x, |)

(162)

>
>

>
>

For the attractive Hubbard model U < 0, the up and down sectors are related by time
i’T) (163)

reversal symmetry:
Tz( i’T) T-1= z*icry (
il il

Of course, we have assumed that the hopping remains invariant under time reversal. As a
consequence of this symmetry:

GO0 (x,y, T) =G00(x,y|) (164)

The usage of the flavor symmetry is described in Sec. 5.6.1. Only one flavor has to be com-
puted and the routines GR_reconstruction(GR), and GRT_reconstruction(GTO, GOT) re-
construct, respectively, the equal-time and time-displaced Green functions for one flavor given
the other. Hence we gain a factor two in computing time. We note that since both symmetries
are anti-unitary, the weights between the two sectors are related by a complex conjugation.
This is specified in the routine weight_reconstruction(weight).

7.9 Numerical precision

Information on the numerical stability is included in the following lines of the corresponding
file info. For a short simulation on a 4 x 4 lattice at U/t =4 and ¢t = 10 we obtain

Precision Green Mean, Max : 5.0823874429126405E-011 5.8621144596315844E-006
Precision Phase Max : 0.0000000000000000
Precision tau Mean, Max : 1.5929357848647394E-011 1.0985132530727526E-005

showing the mean and maximum difference between the wrapped and from scratched com-
puted equal and time-displaced Green functions [6]. A stable code should produce results
where the mean difference is smaller than the stochastic error. The above example shows a
very stable simulation since the Green function is of order one.

7.10 Running the code and testing

To test the code, one can carry out high precision simulations. After compilation, the exe-
cutable ALF . out is found in the directory $ALF_DIR/Prog/ and can be run from any directory
containing the files parameters and seeds (See Sec. 5.7).

Alternatively, as we do bellow, it may be convenient to use pyALF to compile and run the
code, especially when using one of the scripts or notebooks available.

One-dimensional case

The pyALF python script Hubbard_Plain_Vanilla.py runs the projective version of the code
for the four-site Hubbard model. At 8¢t = 10, A7t = 0.05 with the symmetric Trotter decom-
position, we obtain after 40 bins of 2000 sweeps each the total energy:

(A) = —2.103750 £ 0.004825,
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and the exact result is

(A)gxace = —2.100396.

Two-dimensional case

For the two-dimensional case, with similar parameters, we obtain the results listed in Table 20.
The exact results stem from Ref. [144] and the slight discrepancies from the exact results can

QMC Exact

Total energy -13.618 £0.002 -13.6224
Q = (7, m) spin correlations 3.630 £+ 0.006 3.64

Table 20: Test results for the Hubbard_Plain_Vanilla code on a two-dimensional
lattice with default parameters.

be assigned to the finite value of At. Note that all the simulations were carried out with the
default value of the Hubbard interaction, U/t = 4.

8 Predefined Structures

The ALF package includes predefined structures, which the user can combine together or use
as templates for defining new ones. Using the data types defined in the Sec. 5 the following
modules are available:

* lattices and unit cells — Predefined_Latt_mod.F90

* hopping Hamiltonians — Predefined_Hop_mod .F90

¢ interaction Hamiltonians — Predefined Int mod.F90
e observables — Predefined_Obs_mod.F90

e trial wave functions — Predefined_Trial mod.F90

which we describe in the remaining of this section.

8.1 Predefined lattices

The types Lattice and Unit_cell, described in Section 5.3, allow us to define arbitrary one-
and two-dimensional Bravais lattices. The subroutine Predefined_Latt provides some of the
most common lattices, as described bellow.

The subroutine is called as:

Predefined_Latt(Lattice_type, L1, L2, Ndim, List, Invlist, Latt, Latt_Unit)

which returns a lattice of size L1xL2 of the given Lattice_type, as detailed in Table 21.
Notice that the orbital position Latt_Unit%0rb_pos_p(1,:) is set to zero unless otherwise
specified.

In order to easily keep track of the orbital and unit cell, List and Invlist make use of a
super-index, defined as shown below:
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as
a;

Y

Figure 9: Predefined lattices in ALF: (a) square, (b) bilayer square, (c) 3-leg ladder,
(d) honeycomb, (e) bilayer honeycomb, (f) triangular and (g) kagome. Nontrivial
unit cells are shown as gray regions, while gray sites belong to the second layer in
bilayer systems. The links between the orbitals denote the hopping matrix elements
and we have assumed, for the purpose of the plot, the absence of hopping in the sec-
ond layer for bilayer systems. The color coding of the links denotes the checkerboard
decomposition.
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Argument Type Role Description
Lattice_- char Input Lattice configuration, which can take the values:
type - Square

- Honeycomb

- Pi_Flux (deprecated)
- N_leg_ladder
- Bilayer_square

L1, L2 int Input LatticBi2¥ $5eLDey §8RR D lattices)
Ndim int Output  Total number of orbitals
List int Output  For every site index I € [1,Ndim], stores the corre-

sponding lattice position, List (I, 1), and the (lo-
cal) orbital index, List(I,?2)

Invlist int Output  For every lattice_position € [1,Latt%N] and
orbital € [1,Norb] stores the corresponding site
index I(lattice_position,orbital)

Latt Lattice Output  Sets the lattice
Latt_Unit Unit_- Output  Sets the unit cell
cell

Table 21: Arguments of the subroutine Predefined_Latt. Note that the Pi_Flux
lattice is deprecated, since it can be emulated with the Square lattice with half a flux
quanta piercing each plaquette.

nc = 0 ! Super-index labeling unit cell and orbital
Do I = 1,Latt¥%N ! Unit-cell index
Do no = 1,Norb ! Orbital index
nc =nc + 1
List(nc,1) = I ! Unit-cell of super index nc
List(nc,2) = no ! Orbital of super index nc
Invlist(I,no) = nc ! Super-index for given unit cell and orbital
Enddo
Enddo

With the above-defined lists one can run through all the orbitals while keeping track of the
unit-cell and orbital index. We note that when translation symmetry is completely absent one
can work with a single unit cell, and the number of orbitals will then correspond to the number
of lattice sites.

8.1.1 Square lattice, Fig. 9(a)

The choice Lattice_type = "Square" sets a; = (1,0) and a, = (0,1) and for an L; X L,
lattice L]_ = L1a1 and L2 = Lzaz:

Latt_Unit%N_coord = 2

Latt_Unit%Norb =1

Latt_Unit%0rb_pos_p(1,:) = 0.d0

al p(1) = 1.0 ; al_p(2) = 0.d0

a2_p(1) 0.0 ; a2_p(2) = 1.40

Li_p dble(L1)*al_p

L2.p = dble(L2)*a2_p

Call Make_Lattice( L1_p, L2_p, al_p, a2_p, Latt )
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Also, the number of orbitals per unit cell is given by NORB=1 such that Ny;, = Nypi.cen - NORB =

LattyN - NORB, since Nyji.cen = LattiN.

8.1.2 Bilayer Square lattice, Fig. 9(b)

The "Bilayer_square" configuration sets:

Latt_Unit%Norb =2
Latt_Unit%N_coord = 2
do no = 1,2

Latt_Unit}0rb_pos_p(no,1) = 0.d0
Latt_Unit%0rb_pos_p(no,2) = 0.d0
Latt_Unit%0rb_pos_p(no,3) real (1-no,kind(0.d0))
enddo
Call Make_Lattice( Li_p, L2_p, al_p, a2_p, Latt )
Latt%al_p(1) = 1.0 ; Latt%al_p(2) = 0.dO
Latt%a2_p(1) 0.0 ; Latt%a2_p(2) = 1.d0
Latt/L1_p dble(L1l)*al_p
Latt%L2_p dble(L2)*a2_p

8.1.3 N-leg Ladder lattice, Fig. 9(c)

The "N_leg_ladder" configuration sets:

Latt_Unit%Norb = L2
Latt_Unit%N_coord = 1
do no = 1,L2
Latt_Unit}0rb_pos_p(no,1) = 0.d0
Latt_Unit%0rb_pos_p(no,2) = real(no-1,kind(0.d0))
enddo

al_p(1) = 1.0 ; al_p(2) = 0.d0
a2_p(1) = 0.0 ; a2_p(2) = 1.d0
Li_p = dble(Ll)*al_p
L2_p = a2_p

Call Make_Lattice( L1_p, L2_p, al_p, a2_p, Latt )

8.1.4 Honeycomb lattice, Fig. 9(d)

In order to carry out simulations on the Honeycomb lattice, which is a triangular Bravais lattice
with two orbitals per unit cell, choose Lattice_type="Honeycomb", which sets

al_p(1) = 1.D0 ; al_p(2) = 0.dO

a2_p(1) = 0.5D0 ; a2_p(2) = sqrt(3.D0)/2.DO
Ll p = Dble(Ll) * al_p

L2_p = dble(L2) * a2_p

Call Make_Lattice( L1_p, L2_p, al_p, a2_p, Latt )
Latt_Unit%Norb =2

Latt_Unit%N_coord = 3

Latt_Unit%0rb_pos_p(1,:) = 0.d0
Latt_Unit%0rb_pos_p(2,:)

(a2_p(:) - 0.5DO*al_p(:)) * 2.D0/3.DO

The coordination number of this lattice is N_coord=3 and the number of orbitals per unit

cell, NORB=2. The total number of orbitals is therefore Ny;,=Latt/%N+NORB.

8.1.5 Bilayer Honeycomb lattice, Fig. 9(e)

The "Bilayer_honeycomb" configuration sets:
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Latt_Unit%Norb =4
Latt_Unit%N_coord = 3
Latt_unit}0rb_pos_p = 0.d0
don=1,2

Latt_Unit}0rb_pos_p(1,n) = 0.d0

Latt_Unit)0rb_pos_p(2,n) = (a2_p(n) - 0.5DO*al_p(n)) * 2.D0/3.DO

Latt_Unit%0rb_pos_p(3,n) 0.d0

Latt_Unit%0rb_pos_p(4,n) (a2_p(n) - 0.5DO*al_p(n)) * 2.D0/3.DO
enddo

Latt_Unit%0rb_pos_p(3,3) = -1.d0
Latt_Unit%0rb_pos_p(4,3) = -1.d0
al_p(1) = 1.DO ; al_p(2) = 0.d0

a2_p(1) = 0.5D0 ; a2_p(2) = sqrt(3.D0)/2.DO
Li_p = dble(Ll)*al_p
L2_p = dble(L2)*a2_p

Call Make_Lattice( L1_p, L2_p, al_p, a2_p, Latt )

8.1.6 Triangular lattice, Fig. 9(f)

The "Triangular" configuration sets:

Latt_Unit%Norb =1
Latt_Unit%N_coord = 3
al_p(1) = 1.DO ; al_p(2) = 0.d0

a2_p(1) = 0.5D0 ; a2_p(2) = sqrt(3.D0)/2.DO
Allocate (Latt_Unit%0rb_pos_p(1,2))
Latt_Unit}0rb_pos_p = 0.d0

Lip = dble(Ll) * al_p

L2_p = dble(L2) * a2_p

Call Make_Lattice( L1i_p, L2_p, al_p, a2_p, Latt )

This lattice is only implemented for the Hubbard model.

8.1.7 Kagome lattice, Fig. 9(g)

The "Kagome" configuration sets:

Latt_Unit%Norb =3
Latt_Unit%N_coord = 4
al p(1) = 1.D0 ; al_p(2) = 0.d40

a2_p(1) = 0.5D0 ; a2_p(2) = sqrt(3.D0)/2.DO
Allocate (Latt_Unit’%0rb_pos_p(3,2))
Latt_Unit%0rb_pos_p = 0.d0
Latt_Unit%0rb_pos_p(2,:) = al_p(:)/2.d40
Latt_Unit%0rb_pos_p(3,:) = a2_p(:)/2.d40

Li_p = dble(L1l) * al_p

L2_p = dble(L2) * a2_p

Call Make_Lattice( L1_p, L2_p, al_p, a2_p, Latt )

This lattice is only implemented for the Hubbard model.

8.1.8 r-Flux lattice (deprecated)

The "Pi_Flux" lattice has been deprecated, since it can be emulated with the Square lattice
with half a flux quanta piercing each plaquette. Nonetheless, the configuration is still available,
and sets:

Latt_Unit%Norb =2
Latt_Unit%N_coord = 4
al_p(1) = 1.DO ; al_p(2) = 1.d40
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a2_p(1) = 1.D0 ; a2.p(2) = -1.d0
Latt_Unit%0rb_pos_p(1,:) = 0.d0
Latt_Unit}0rb_pos_p(2,:) = (al_p(:) - a2_p(:))/2.d0
Li_p dble(L1) * (al_p - a2_p)/2.d0

L2_p dble(L2) * (al_p + a2_p)/2.40

Call Make_Lattice( L1_p, L2_p, al_p, a2_p, Latt )

8.2 Generic hopping matrices on Bravais lattices

The module Predefined_Hopping provides a generic way to specify a hopping matrix on a
multi-orbital Bravais lattice. The only assumption that we make is translation symmetry. We
allow for twisted boundary conditions in the L; and L, lattice directions. The twist is given by
Phi_X and Phi_Y respectively. If the flag bulk=.true., then the twist is implemented with
a vector potential. Otherwise, if bulk=.false., the twist is imposed at the boundary. The
routine also accounts for the inclusion of a total number of N_Phi flux quanta traversing the
lattice. All phase factors mentioned above can be flavor dependent. Finally, the checkerboard
decomposition can also be specified in this module.

8.2.1 Setting up the hopping matrix: the Hopping_Matrix_type

All information for setting up a generic hopping matrix on a lattice, including the checker-
board decomposition, is specified in the Hopping_Matrix_type type, which we describe in
the remaining of this section. The information stored in this type (see Table 22) fully defines
the array of operator type OP_T that accounts for the single particle propagation in one time
step, from which the kinetic energy can be derived as well.

Generic hopping matrices
The generic Hopping Hamiltonian reads:

omi (J+6

7. — (s) At 2 770 AD()dl
Hr= >, Thieniisse™ ™ €650 (165)
(i,6),(j,6"),s,0

with boundary conditions

I() 2mi  (S)-
—27'[1—4: Ty xli (l+§) /\'i'
(i,5),5,0 ’

AT
Cli+L1;,8),0 (166)
Here i labels the unit cell and 6 the orbital. Both the twist and vector potential can have a
flavor dependency. These and the other components of the generic Hopping Hamiltonian are
described below. For now onwards we will mostly omit the flavor index s.

Phase factors. The vector potential accounts for an orbital magnetic field in the z direction that
is implemented in the Landau gauge: A(x) = —B(y,0,0) with x = (x, y,z). ®, corresponds
to the flux quanta and the scalar function y is defined through:

A(x + L) =A(x)+ Vy (x). (167)

Provided that the bare hopping Hamiltonian, T (i.e., without phases, see Eq. (173)), is
invariant under lattice translations, H; commutes with magnetic translations that satisfy the
algebra:

2mi

T 1, =B B@Df ¢ (168)

82



SciPost Physics Codebases Submission

On the torus, the uniqueness of the wave functions requires that TLI TLz =T L, T 1, such that

B-(axb):

N, 16
o, ® (169)

with N an integer. The variable N_Phi, specified in the parameter file, denotes the number
of flux quanta piercing the lattice. The variables Phi_X and Phi_Y also in the parameter file
denote the twists — in units of the flux quanta — along the L; and L, directions. There are
gauge equivalent ways to insert the twist in the boundary conditions. In the above we have
inserted the twist as a boundary condition such that for example setting Phi_1=0.5 corre-
sponds to anti-periodic boundary conditions along the L; axis. Alternatively we can consider
the Hamiltonian:

4 - (s) <t Mfij+5/(A(l)+A¢)dl~
Hr = Z T.6),6.67 1,605,001 "° €(,6".5,0 (170)
(1,6),0j,6"),5,0
with boundary conditions
ot 3, (48 A
C(i+Li,5),s,cr—e¢O ' C(i,5),s,a' a71)
Here | |
a a
a, < Bilaily | dolaol a2
27|L,| 27t|Ly|

and b; corresponds to the reciprocal lattice vectors satisfying a; - b; = 215; ;. The logical
variable bulk chooses between these two gauge equivalent ways of inserting the twist angle.
If bulk=.true. then we use periodic boundary conditions — in the absence of an orbital field
— otherwise twisted boundaries are used. The above phase factors are computed in the module
function:

complex function Generic_hopping(i, no_i, n_1, n_2, no_j, N_Phi, Phi_1, Phi_2, Bulk,
Latt, Latt_Unit)

which returns the phase factor involved in the hopping of a hole from lattice site i + 6, to
i+na;+na,+06 no,- Here 0, is the position of the no; orbital in the unit cell i. The infor-
mation for the phases is encoded in the type Hopping_matrix_type.

The Hopping matrix elements. The hopping matrix is specified assuming only translation
invariance. (The point group symmetry of the lattice can be broken.) That is, we assume that
for each flavor index:

T® =7 (173)

(i,6),(i+nja;+nya,,6") ~ " (0,8),(nja;+nyay,8’)
The right hand side of the above equation is given the type Hopping_matrix_type.
The checkerboard decomposition. Aside from the hopping phases and hopping matrix el-

ements, the Hopping_matrix_type type contains information concerning the checkerboard
decomposition. In Eq. (84) we wrote the hopping Hamiltonian as:

Nr

fp=> > 10, (174)

=1 keST

with the rule that if k and k’ belong to the same set Sl.T then [T(k), T(k/)] = 0. In the checker-
board decomposition, T® corresponds to hopping on a bond. The checkerboard decompo-
sition depends on the lattice type, as well as on the hopping matrix elements. The required
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information is stored in Hopping_matrix_type. In this data type, N_FAM corresponds to the
number of sets (or families) (N in the above equation). L_FAM(1:N_FAM) corresponds to the
number of bonds in the set, and finally, LIST_FAM(1:N_FAM, 1:max(L_FAM(:)), 2) con-
tains information concerning the two legs of the bonds. Finally, to be able to generate the
imaginary time step of length At we have to know by which fraction of AT we have to prop-
agate each set. This information is given in the array Prop_Fam.

As an example we can consider the three-leg ladder lattice of Figure 9(c). Here the number
of sets (or families) N_FAM is equal to four, corresponding to the red, green, black and blue
bonds. It is clear from the figure that bonds in a given set do not have common legs, so that
hopping instances on the bonds of a given set commute.

Usage: the Hopping_Matrix_type

There are N_bonds hopping matrix elements emanating from a given unit cell, defined so
that looping over all of the elements does not overcount the bonds. For each bond, the array
List contains the full information to define the RHS of Eq. (173). The hopping amplitudes are
stored in the array T and the local potentials in the array T_loc (See Table 22). The Hopping_-
Matrix_type type also contains the information for the checkerboard decomposition.

Variable Type Description

N_bonds int Number of hopping matrix elements within
and emanating from a unit cell

List(N_bonds,4) int List(e,1) = 6

List(e,2) = &’
List(e,3) = n;
List(e,4) = n,

T(N_bonds) cmplx Hopping amplitude

T_loc(Norb) cmplx On site potentials (e.g., chemical potential,
Zeeman field)

N_Phi int Number of flux quanta piercing the lattice

Phi_X dble Twist in a; direction

Phi_Y dble Twist in a, direction

Bulk logical Twist as vector potential (T) or boundary
condition (F)

N_Fam int Number of sets, N in Eq. (84)

L_Fam(N_FAM) int Number of bonds per set ST

List_Fam(N_FAM,max(L_FAM(:)),2) int List_Fam(e,e,1) = Unit cell
List_Fam(e,e,2) = Bond number

Prop_Fam(N_FAM) dble The fraction of At with which the set will
be propagated

Table 22: Public member variables of the Hopping_Matrix_type type.

The data in the Hopping_matrix_type type suffices to uniquely define the unit step propa-
gation for the kinetic energy, and for any combinations of the Checkerboard and Symm options
(see Sec. 2.3). The propagation is set through the call:

Call Predefined_Hoppings_set_OPT(Hopping_Matrix, List, Invlist, Latt, Latt_unit, Dtau,
Checkerboard, Symm, OP_T,
pinned_vertices, pinning_factor, pinning_offset)
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Figure 10: The single particle spectrum of the tight binding model on the honeycomb
(a) and square (b) lattices as a function of the flux Ng. This corresponds to the well
known Hofstadter butterflies.

in which the operator array OP_T(*,N_FL) is allocated and defined. In the simplest case,
where no checkerboard is used, the array’s first dimension is unity.

This routine allows optional arguments to allow for pinning: that is, modifying existing
matrix elements in the hopping matrix. The syntax is the following:

* pinned_vertices[1:N_pin, 1:2] containstheindex of the twolegspinned_vertices[i, 1]
and pinned_vertices[i, 2] of the i-th vertex to be pinned, where N_pin is the num-
ber of pinned vertices. If pinned_vertices[i, 1] = pinned_vertices[i, 2] then
the pinning refers to a site and not to a bond.

* pinning_factor[1:N_pin, 1:N_f1] contains the multiplicative factor for each flavor.
Meaning that the matrix element gets multiplied by this factor.

* pinning_offset[1:N_pin, 1:N_f1] contains the offset for each flavor. Meaning that
this value gets added to the matrix element after multiplication by the pinning factor.

An explicit example of how to use the pinning option is describe in Sec. 9.1.
The data in the Hopping_matrix_type type equally suffices to compute the kinetic energy.
This is carried out in the routine Predefined_Hoppings_Compute_Kin.

8.2.2 An example: nearest neighbor hopping on the honeycomb lattice

For the honeycomb lattice of Fig. 9(d) the number of bond within and emanating from a unit
cell is N_bonds = 3. The list array of the Hopping matrix_type reads:

list(1,1) = 1; 1list(1,2) =
list(2,1) = 2; 1list(2,2) =

; list(1,3) = 0; list(1,4)
1list(2,3) = 0: list(2,4)

! Intra unit-cell hopping

1 ! Inter unit-cell hopping
-1 ! Inter unit-cell hopping
!
!

1
O H N = N

1list(3,1) = 1; 1list(3,2) ; 1list(3,3) = 1: 1list(3,4) =
T(1) = -1.0; T(2) = -1.0; (3) = -1.0 Hopping
T_loc(1) = 0.0; T_loc(2) = 0.0 Chemical potential

In the last two lines, we have set the hopping matrix element for each bond to —1 and the
chemical potential to zero. The fields, can then be specified with the variables N_phi, Phi_-
x, Phi_y. Setting the twists, Phi_x, Phi_y to zero and looping over N_phi from 1---L?
produces the single particle spectrum of Fig. 10(a).

For the honeycomb lattice the checkerboard decomposition for the nearest neighbor hop-
ping consists of three sets: N_Fam = 3 each of length corresponding to the number of unit
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cells. In Fig. 9(d) these sets are denoted by different colors. In the code, the elements of the
sets are specified as:

do I = 1,Latt¥%N
do nf = 1,N_FAM
List_Fam(nf,I,1)
List_Fam(nf,I,2)
enddo
enddo

I ! Unit cell
nf ! The bond

8.2.3 Predefined hoppings

The module provides hopping and checkerboard decompositions, defining a Hopping_Matrix
(an array of length N_FL of type Hopping_Matrix_type, see Sec. 8.2.1) for each of the fol-
lowing predefined lattices.

Square

The call:

Call Set_Default_hopping_parameters_square (Hopping_Matrix, T_vec, Chem_vec, Phi_X_vec,
Phi_Y_vec, Bulk, N_Phi_vec, N_FL, List, Invlist, Latt, Latt_unit)

defines the Hopping_Matrix for the square lattice:

A o 2m (TR 4G
Br=S| D1 9 oW A0 e | —u¢ e ] ars)

i+0,s,0 i,5,0 1,5,0
i,0,8 6={ay,a,}

The vectors T_vec and Chem_vec have length N_FL and specify the hopping and the chemical
potentials, while the vectors Phi_X_vec, Phi_Y_vec and N_Phi_vec, also of length N_FL,
define the vector potential.

Honeycomb

The call:

Call Set_Default_hopping_parameters_honeycomb(Hopping Matrix,T_vec, Chem_vec, Phi_X_vec,
Phi_Y_vec, Bulk, N_Phi_vec, N_FL, List, Invlist, Latt, Latt_unit)

defines the Hopping_Matrix for the honeycomb lattice:

i [i+0
_ L (s)at 2 (70 AL (1ydl
Hr = Z Z 0™ Ciysso THC
i,0,5 5:{51,52,53}

_ (S)(AT A AT A )
+Z H Ci,s,oci,s,cr+Ci+51,s,aci+51,s,a , (176)

i,0,8

where the T_vec and Chem_vec have length N_FL and specify the hopping and the chemical
potentials, while the vectors Phi_X_vec, Phi_Y_vec and N_Phi_vec, also of length N_FL,
define the vector potential. Here i runs over sublattice A, and i + 6 over the three nearest
neighbors of site i.
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Square bilayer

The call:

Call Set_Default_hopping_parameters_Bilayer_square(Hopping Matrix, T1_vec, T2_vec,
Tperp_vec, Chem_vec, Phi_X_vec, Phi_Y_vec, Bulk, N_Phi_vec, N_FL, List, Invlist,
Latt, Latt_unit)

defines the Hopping_Matrix for the bilayer square lattice:

A 2ni (146 ,4(s) "
Hr = Z Z —t®)el e O +He | —u®e

i,s,0,n i+6,s,0,n i,s,0,n 1,5,0,n
i,0,5,n o0={a;,a,}

+Z (S)(lsal 1502+HC) (177)

lO'S

where the additional index n labels the layers.

Honeycomb bilayer

The call:

Call Set_Default_hopping_parameters_Bilayer_honeycomb(Hopping Matrix, T1_vec, T2_vec,
Tperp_vec, Chem_vec, Phi_X_vec, Phi_Y_vec, Bulk, N_Phi_vec, N_FL, List, Invlist,
Latt, Latt_unit)

defines the Hopping_Matrix for the bilayer honeycomb lattice:

A Zm i+ (s)
A=) > =t o Ji AW, +H.c.

n “is,o, n i+06,s,0,n
io‘sn 6:{51,62,63}

(S)( A af )
+Z 150161502+ i+61,5,0,1 l+51,502+H'C'

lO'S

(s) A AT
+ Z ( i,s U,nci,s,o,n + Cl+51,s o,n l+51,s o n) (178)

l ag,s,n
Here, the additional index n labels the layer. i runs over the unit cells and 6 = {6,,0,, 03}
over the three nearest neighbors.
N-leg ladder
The call:

Call Set_Default_hopping_parameters_n_lag_ladder (Hopping_Matrix, T_vec, Tperp_vec,
Chem_vec, Phi_X_vec, Phi_Y_vec, Bulk, N_Phi_vec, N_FL, List, Invlist, Latt, Latt_unit

defines the Hopping_Matrix for the the N-leg ladder lattice:

Norb

A 2mi i+ay ,(s)
_ZZ ©)pt =AYt ON I
Hr = ( ‘ lsgne o C1+‘11,S;0,H+H' U lSO'nClSO'n
i,o,s n=1
Norb—1
ni ((Mag ()
_ [, AP
* Z Z t l+51,5 o, ne “ Citd,,5,0,n+1 +He |. (179)
i,o,s n=

Here, the additional index n defines the orbital. Note that this lattice has open boundary
conditions in the a, direction.
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Triangular and Kagome

The very same structure as above applies for the Kagome and triangular lattices.

8.3 Predefined interaction vertices

In its most general form, an interaction Hamiltonian, expressed in terms of sums of perfect
squares, can be written, as presented in Section 1, as a sum of M, vertices:

My Neol Np Ndim 2 My 9
HV = Uk {Z Z [(Z xosvx(i(/S) Ayas) + aks:|} = Z Uk (V(k)) 4)
k=1

o=1s=1 X,y

which are encoded in one or more variables of type Operator, described in Sec. 5.1. We often
use arrays of Operator type, which should be initialized by repeatedly calling the subroutine
Op_make.

The module Predefined_Int_mod.F90 implements some of the most common of such
interaction vertices 7—A[§,k), as detailed in the remainder of this section, where we drop the su-
perscript (k) when unambiguous.

8.3.1 SU(N) Hubbard interaction

The SU(N) Hubbard interaction on a given site i is given by

2
Hy, +~———[:E:( e 1/2)] : (180)
Neol

Assuming that no other term in the Hamiltonian breaks the SU(N) color symmetry, then this
interaction term conveniently corresponds to a single operator, obtained by calling, for each
of the Ng;, sites i:

Call Predefined_Int_U_SUN(OP, I, N_SUN, DTAU, U)

which defines:
0pP(1) =1
0p%0(1,1) = cmplx(1.d0, 0.d0, kind(0.DO))
Op%alpha = cmplx(-0.5d0,0.d0, kind(0.DO))
Op%g = SQRT(CMPLX (-DTAUU/ (DBLE(N_SUN)), 0.DO, kind(0.D0)))
Opltype = 2
To relate to Eq. (4), we have V(”) Oy,yOx,is Qis = —% and U, = NLI Here the flavor

index, s, plays no role.

8.3.2 M,-Hubbard interaction

Call Predefined_Int_U_MZ(OP_up, Op_do, I, DTAU, U)

The M,-Hubbard interaction is given by

Ly = —% Slee,—ee,] (181)

i
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which corresponds to the general form of Eq. (4) by setting: Ny = 2, N,;; = N_SUN = 1,
My = Nypitcel, U = 2, V(” D= =90, 5,”-, VJE;;SZZ) = —6x,y5x,i, and a;; = 0; and which is
defined in the subroutine Predef 1ned_Int_U_MZ by two operators:

Op_up%P (1) I
Op_up#%0(1,1) = cmplx(1.d40, 0.d0, kind(0.DO))
Op_up%alpha = cmplx(0.d0, 0.d0, kind(0.DO))

Op_up’g = SQRT(CMPLX(DTAU*U/2.d0, 0.DO, kind(0.D0)))
Op_upktype = 2
Op_do%P(1) =1

Op_do%0(1,1) = cmplx(1.d40, 0.d0, kind(0.DO))

Op_do%alpha = cmplx(0.d40, 0.d0, kind(0.DO))

Op_doYg = -SQRT(CMPLX (DTAU%U/2.d0, 0.DO, kind(0.D0)))
Op_do%itype = 2

8.3.3 SU(N) V-interaction

Call Predefined_Int_V_SUN(OP, I, J, N_SUN, DTAU, V)

The interaction term of the generalized t-V model, given by

R V Ncol ; ; 2
’vai’j == Z (CIO' )cr +c ]O’ lCT) > (182)
col | 5=1

is coded in the subroutine Predefined_Int_V_SUN by a single symmetric operator:

Op%P (1)
0p%P(2) J

0p%0(1,2) = cmplx(1.d0 ,0.d0, kind(0.DO))
0p%0(2,1) = cmplx(1.d0 ,0.d0, kind(0.DO))

I

Op’%g = SQRT(CMPLX(DTAU*V/real (N_SUN,kind(0.d40)), 0.DO, kind(0.D0)))
Op’alpha = cmplx(0.d0, 0.d0, kind(0.DO))
Opltype = 2

8.3.4 Fermion-Ising coupling

Call Predefined_Int_Ising SUN(OP, I, J, DTAU, XI)

The interaction between the Ising and a fermion degree of freedom, given by
Neol

ﬁV,i,f i Jg Z ( ioc%jo A]ro A10) > (183)

where & determines the coupling strength, is implemented in the subroutine Predefined_-
Int_Ising_SUN:

Op%P(1) =1

Op%P (2) J

0p%0(1,2) = cmplx(1.d0 ,0.d0, kind(0.DO))
0p%0(2,1) = cmplx(1.d0 ,0.d0, kind(0.DO))
Ophg cmplx (-DTAU*XI,0.D0,kind (0.DO))
Op%alpha = cmplx(0d0,0.d0, kind(0.D0))
Op’type 1
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8.3.5 Long-Range Coulomb repulsion

Call Predefined_Int_LRC(OP, I, DTAU)

The Long-Range Coulomb (LRC) interaction can be written as
N 1 . N . N
e ﬁizj(”f‘ﬁ)vf’f (4-3) (184

where

N
=>e e, (185)
o=1

and i corresponds to a super-index labelling the unit cell and orbital.
The code uses the following HS decomposition:

—ATHVk J l_[d¢ e N4AT¢ 1¢j_Zi iAT‘pi(ﬁi_%,). (186)

The above holds only provided that the matrix V is positive definite and the implementation
follows Ref. [51].
The LRC interaction is implemented in the subroutine Predefined_Int_LRC:

OpiP(1) =1
0p%0(1,1) = cmplx(1.d0 ,0.d0, kind(0.DO))
Op%alpha = cmplx(-0.5d0,0.d0, kind(0.DO))
Op’%g = cmplx(0.d0 ,DTAU, kind(0.DO))
Opltype = 3

8.3.6 J,-J, interaction

Call Predefined_Int_Jz(OP_up, Op_do, I, J, DTAU, Jz)

Another predefined vertex is:

|, | I, |

N |, | 2
Hyiy == (ST —sgnll,lS}] ) = 0,877 = 2 (S7 = 7(S})? (187)
which, if particle fluctuations are frozen on the i and j sites, then (S? )2 = 1/4 and the inter-
action corresponds to a J,-J, ferromagnetic or antiferromagnetic coupling.

The implementation of the interaction in Predefined_Int_Jz defines two operators:

Op_upkP(1) =1

Op_up%P(2) =17

Op_up%0(1,1) = cmplx(1.dO, 0.d0, kind(0.D0O))
Op_up%0(2,2) = cmplx(-Jz/Abs(Jz), 0.d0, kind(0.D0))
Op_up%alpha = cmplx(0.dO0, 0.d0, kind(0.DO))
Op_up’g = SQRT(CMPLX(DTAU*Jz/8.d0, 0.d0, kind(0.D0)))
Op_up/type = 2

Op_do%P(1) =1

Op_do%xP(2) =17

Op_do%0(1,1) = cmplx(1.40, 0.d0, kind(0.d0))
Op_do%0(2,2) = cmplx(-Jz/Abs(Jz), 0.d0, kind(0.d0))
Op_do%alpha = cmplx(0.4d0, 0.d0, kind(0.d0))
Op_do%g = -SQRT(CMPLX(DTAU*Jz/8.d0, 0.d0, kind(0.d0)))
Op_doitype = 2
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8.4 Predefined observables

The types Obser_Vec and Obser_Latt described in Section 5.4 handle arrays of scalar observ-
ables and correlation functions with lattice symmetry respectively. The module Predefined_-
Obs provides a set of standard equal-time and time-displaced observables, as described below.
It contains procedures and functions. Procedures provide a complete handling of the observ-
able structure. That is, they take care, for example, of incrementing the counter and of the
average sign. On the other hand, functions only provide the Wick decomposition result, and
the handling of the observable structure is left to the user.

The predefined measurements methods take as input Green functions GR, GTO, GOT, GO0O,
and GTT, defined in Sec. 7.7.2 and 7.7.3, as well as N_SUN, time slice Ntau, lattice information,
and so on — see Table 23.

As mentioned in Sec. 5.4 and summarized in Table 8 the lattice and unit-cell objects that are
passed in the following routines, are tied to the specific observable and not to the Hamiltonian.
For example, the Hamiltonian can be defined on a bilayer-honeycomb lattice, with associated
hamiltonian lattice Latt_ham, unit-cell Latt_unit_ham, and lists 1ist_ham, invlist_ham,
whereas the observable can be defined on a one dimensional observable lattice Latt with a
two orbitals per unit cell Unit_cell. Recall that the total number of orbitals reads

Ndim = Latt_hamyN * Latt_unit_ham})Norb

and that the Green functions have dimension Ndim x Ndim x N_f1. The array 1ist (Ndim, 2)
is defined as follows:

) 0 if n is not an orbital of the observable lattice
list(n,1) =+ . . ) . .
iynie Otherwise. i,,;, corresponds to the unit cell of the observable lattice
(188)
list(n.2) 0 if n is not an orbital of the observable lattice
ist(n,2) =1 . N . .
i,,, Otherwise. i ., corresponds to the orbital of the observable lattice

(189)

8.4.1 Equal-time SU(N) spin-spin correlations

A measurement of SU(N) spin-spin correlations can be obtained through:

Call Predefined_Obs_eq_SpinSUN_measure(Latt, Latt_unit, List, GR, GRC, N_SUN, ZS, ZP, Obs

If N FL = 1 then this routine returns

oN N3-1
y H — AT A AT A
ObS(l —J,n;, T‘l]) = m ; ((Ci’ni Taci,ni cj,nj Tacj,nj)>c’ (190)

where T are the generators of SU(N) satisfying the normalization conditions Tr[T*T?] = 6 ab/2

a1~ oAt At At . ) . . .
Tr[T] =0, cj)nj = (cj’nj’l, , cj’nj’N) is an N-flavored spinor, j corresponds to the unit-cell

index and n; labels the orbital. 1
Using Wick’s theorem, valid for a given configuration of fields, we obtain

oN = N
— a a
Obs=57 D, 2, Taplisx

a=1 a,p,y,6=1

(I (N o N P (P ) ) B €2

21
a

Recall that ((e)). corresponds to the expectation value of an observable for a given configuration of fields C
and not to the connected part of the observable, see Eq. (19).
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Argument Type Description

Latt Lattice Lattice as a variable of type Lattice, see Sec. 5.3

Latt_Unit Unit_cell Unit cell as a variable of type Unit_cell, see
Sec. 5.3

List(Ndim,2) int For every site index I, stores the corresponding lat-
tice position, List (I, 1), and the (local) orbital in-
dex, List(I,2)

NT int Imaginary time 7

GR(Ndim,Ndim,N_FL) cmplx Equal-time Green function GR(i,j,s) = (ci’sc;;s)

GRC(Ndim,Ndim,N_FL) cmplx GRC(i,j,s) = {c| is ]S)—5i,j—GR(j,i,s)

GTO(Ndim,Ndim,N_FL) cmplx Time-displaced Green function ((T¢, (7)¢] (0)))

GOT(Ndim,Ndim,N_FL) cmplx Time-displaced Green function ({77, 5(0) i (1))

GOO(Ndim,Ndim,N_FL) cmplx Time-displaced Green function ((Tc ,(0) (0)))

GTT(Ndim,Ndim,N_FL) cmplx Time-displaced Green function ({7¢ lS(T) (T ))

N_SUN int Number of fermion colors Ny

Zs cmplx ZS =sgn(C), see Sec. 5.4

yAY cmplx zP = ¢ 5()/Re [e—s(c)]’ see Sec. 5.4

Obs Obser_Latt Output: one or more measurement result

Table 23: Arguments taken by the subroutines in the module Predefined_Obs. Note
that a given method makes use of only a subset of this list, as described in this section.
Note also that we use the superindex i = (i,n;) where i denotes the unit cell and n;

the orbital.

For this SU(N) symmetric code, the Green function is diagonal in the spin index and spin

independent:

Hence,

N2—1

AT I\
<<Cl ,1,0 ] nj,

N2-1

a=1

phe = 8apl(E] 80 ) e (192)

2 ([T e 8o D lle] 1 85 D

M [C ) el el )

N{(E & Netie € e (193)

Note that we can also define the generators of SU(N) as

N
1 p
SH(X)_Cx,u v M,VNZ a (194)

a=1

With this definition, the spin-spin correlations read:

N

D8R8 () =

u,v=1

(N?=1){(efe, ) cl(e e (195)

In the above x denotes a super index defining site and orbital. Aside from the normalization,
this formulation gives the same result.
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8.4.2 Equal-time spin correlations

A measurement of the equal-time spin correlations can be obtained by:

Call Predefined_Obs_eq_SpinMz_measure(Latt, Latt_unit, List, GR, GRC, N_SUN, ZS, ZP,
ObsZ, ObsXY, ObsXYZ)

If N_FL=2 and N_SUN=1, then the routine returns:
0bsz(i—j,n;,n;) = 4((¢], 5%, & sZéj’nj))c,

My Jon;

AT

ObsXY (i —j,ng,n;) =2 (((é}‘,nisxei,ni ), 5%, Ne+ (@], 878, ¢, ¢ ))C),
2 - 0bsXY + ObsZ

ObsXYZ = 3 (196)
Here ¢! = (éT el ) is a two component spinor and S = Lo, with
i’ni i’ni:T, i,ni,l 2 ?

oo 0 S 2D

the Pauli spin matrices. Note that for each observable the background is stored in the Obs_latt0
field, see Table 8.

8.4.3 Equal-time Green function

A measurement of the equal-time Green function can be obtained by:

Call Predefined_Obs_eq_Green_measure(Latt, Latt_unit, List, GR, GRC, N_SUN, ZS, ZP, QObs)

Which returns:
Ncol Nﬂ

Obs(i —j,n;,n;) = Z Z(ag‘,ni,g,sej,nj,g,g. (198)

o=1s=1

8.4.4 Equal-time density-density correlations

A measurement of equal-time density-density correlations can be obtained by:

Call Predefined_Obs_eq_Den_measure(Latt, Latt_unit, List, GR, GRC, N_SUN, ZS, ZP, Obs)

Which returns:

ObS(i—j,Tli,le) = <(Ni,niNj,nj)>>C’ (199)
where
Ncol Nﬂ
Ni;ni = Z Z 62,ni,a,séi,n,~,a,5' (200)
o=1s=1

The background, ((Z\Ali’ni))c is stored in ObsO.

8.4.5 Time-displaced Green function

A measurement of the time-displaced Green function can be obtained by:

Call Predefined_Obs_tau_Green_measure(Latt, Latt_unit, List, NT, GTO, GOT, GOO, GTT,
N_SUN, ZS, ZP, QObs)

Which returns:
Ncol Nﬂ

0bs(i—j, 7misny) = D > ({6 o (D, o e (201)

o=1s=1
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8.4.6 Time-displaced SU(N) spin-spin correlations

A measurement of time-displaced spin-spin correlations for SU(N) models (N; = 1) can be
obtained by:

Call Predefined_Obs_tau_SpinSUN_measure(Latt, Latt_unit, List, NT, GTO, GOT, GOO, GTT,
N_SUN, ZS, ZP, QObs)

N2-1
. . 2N A-i- A AJ- ~
Obs(i—j,7,n;,n;) = NI—T El <<ci,n,-(T)Taci,ni(T) c]'.’nj Tacj,nj))c (202)
a=

where T? are the generators of SU(N) (see Sec. 8.4.1 for more details).

8.4.7 Time-displaced spin correlations

A measurement of time-displaced spin-spin correlations for Mz models (Ng = 2,N,; = 1) is
returned by:

Call Predefined_Obs_tau_SpinMz_measure(Latt, Latt_unit, List, NT, GTO, GOT, GOO, GTT,
N_SUN, ZS, ZP, ObsZ, 0ObsXY, ObsXYZ)

Which calculates the following observables:

ObsZ(i —j,7,n;,n;) = 4((8;’ni(’r)3zéi’ni(7) 6;’anzéj

n)le

>

ObsXY(i —j, T, n;,n;) = 2 (((eg',ni(f)sxei’ni(r) e, 5, e

ir Ity
(e, (572, (D) €], 8¢, )
2-0bsXY + ObsZ
: .

ObsXYZ =

(203)

8.4.8 Time-displaced density-density correlations

A measurement of time-displaced density-density correlations for general SU(N) models is
given by:

Call Predefined_Obs_tau_Den_measure(Latt, Latt_unit, List, NT, GTO, GOT, GOO, GTT,
N_SUN, ZS, ZP, OQObs)

Which returns:
Obs(i —j, 7, 13, 15) = (N, ()N ) (204)
The density operator is defined in Eq. (200).

8.4.9 Dimer-Dimer correlations

Let

N
A At A 1 At A
S“v(x):c)'c’ucx’v—éu,vﬁ E c)'c’acx’a (205)

a=1

be the generators of SU(N). Dimer-Dimer correlations are defined as:

(8 (x, )8, (3, TISTs(S0.(2))) ¢ (206)
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where the sum over repeated indices from 1---N is implied. The calculation is carried out for

the self-adjoint antisymmetric representation of SU(N) for which Z a=l x alxa =N /2, such
that the generators can be replaced by:
u . 1
S L(x) = cxu xv_5u,v§' (207)

The function

Complex (Kind=Kind(0.d0)) function Predefined_Obs_dimer_tau(x, y, w, z, GTO, GOT, GOO,
GTT, N_SUN, N_FL)

returns the value of the time-displaced dimer-dimer correlation function. The function

Complex (Kind=Kind(0.d0)) function Predefined_Obs_dimer_eq(x, y, w, z, GR, GRC, N_SUN,
N_FL)

returns the value of the equal time dimer-dimer correlation function:
((glﬁ;(x5T)‘§L(y, T)‘é);s(w) T)Sv?/(z) T)))C' (208)

Here, both GR and GRC are on time slice .
To compute the background terms, the function

Complex (Kind=Kind(0.dO)) function Predefined_Obs_dimerO_eq(x, y, GR, N_SUN, N_FL)

returns A A
({80, ST (v, e (209)

All routines are programmed for N_SUN = 2,4,6,8 at N_FL=1. The routines also handle
the case of broken SU(2) spin symmetry corresponding to N_FL=2 and N_SUN=1. To carry
out the Wick decomposition and sums over spin indices, we use the Mathematica notebooks
DimerDimer_SU2_NFL_2.nb and DimerDimer_SUN_NFL_1.nb.

8.4.10 Bond-Bond correlations

The function

Complex (Kind=Kind(0.d0)) function Predefined_Obs_dimer_kin_eq(I,M, J, N, GR, GRC,
N_SUN, N_FL)

returns:

Neot

Np;
<<IA<i,mIA<j,n>>C with K; ,, = Z Z Alrs o m S,0 +He (210)

The accompanying function

Complex (Kind=Kind(0.dO)) function Predefined_Obs_dimer_kinO_eq(I,M, GR, N_SUN, N_FL)

computes the background:

(&) e

8.4.11 Expectation value of perfect squares

The function

Complex (Kind=Kind(0.d0)) function Predefined_Obs_V_Int(OP_Vint, GR, GRC, N_SUN )
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returns, for a OP_VintYtype=2 vertex, the expectation value:

<< NZfioZl((Z xsoVﬁ,yAy,sa)ws) 2>>C (212)

The function is particularly useful in computing the total energy of the model at hand.

8.4.12 Cotunneling for Kondo models

The Kondo lattice model (KLM), Hy,, is obtained by carrying out a canonical Schrieffer-Wolf
[148] transformation of the periodic Anderson model (PAM), Hp,y,. Hence, e° Hpye ™ = Hyp i
with §7 = —§. Let fx - Create an electron on the correlation f-orbital of the PAM. Then,

cae o 2V, ) 2V 3,
esf;,g,eszv(cr SU+O'CXU, )——fx'o (213)

x,—o’"x

In the above, it 1s understood that o’ takes the value 1 (—1) for up (down) spin degrees of
freedom, that SC’ = f o f _,» and that SZ =3 Za/ o f;a, fx o Fmally, o+ corresponds to

the conduction electron that hybridizes with f | £ . This form matches that der1ved in Ref. [149]
and a calculation of the former equation can be found in Ref. [150]. An identical, but more
transparent formulation is given in Ref. [151] and reads:

flo=208 00y-8,, (214)
o-/
where o denotes the vector of Pauli spin matrices. With the above, one will readily show that
the f; . transforms as fxT - under an SU(2) spin rotation. The function

Complex (Kind=Kind(0.d0)) function Predefined_Obs_Cotunneling(x_c, x, y_c, y, GTO, GOT,
GO0, GTT, N_SUN, N_FL)

returns the value of the time displaced correlation function:

PRTANGT IO (215)
g

Here, x. and y. correspond to the conduction orbitals that hybridize with the x and y f-
orbitals. The routine works for SU(N) symmetric codes corresponding to N_FL=1 and N_SUN
= 2,4,6,8. For the larger N-values, we have replaced the generators of SU(2) with that of
SU(N). The routine also handles the case where spin-symmetry is broken by e.g. a Zeeman
field. This corresponds to the case N_FL=2 and N_SUN=1. Note that the function only carries out
the Wick decomposition and the handling of the observable type corresponding to this quantity
has to be done by the user. To carry out the Wick decomposition and sums over spin indices,
we use the Mathematica notebooks Cotunneling_ SU2_NFL_2.nb and Cotunneling SUN_-
NFL_1.nb.

8.4.13 Rényi Entropy

The module entanglement_mod.F90 allows one to compute the 2°¢ Rényi entropy, S,, for
a subsystem. Using Eq. (25), S, can be expressed as a stochastic average of an observable
constructed from two independent simulations of the model [60]:

e 52 = Z P(Cy)P(Cy)det[Ga(To; C1)Gal(To5 Co) — (1 — Gal70; C1))(L — GalTo5 Co )],
C1,Cy
(216)
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where G4(7; C;), i = 1,2 is the Green function matrix restricted to the desired subsystem A
at a given time-slice 7, and for the configuration C; of the replica i. The degrees of freedom
defining the subsystem A are lattice site, flavor index, and color index.

Notice that, due to its formulation, sampling S, requires an MPI simulation with at least 2
processes. Also, only real-space partitions are currently supported.

A measurement of the 24 Rényi entropy can be obtained by:

Call Predefined_Obs_scal_Renyi_Ent(GRC, List, Nsites, N_SUN, ZS, ZP, Obs)

which returns the observable Obs, for which (Obs) = e™52. The subsystem A can be defined in a
number of different ways, which are handled by what we call specializations of the subroutine,
described as follows.

In the most general case, List(:, N_FL, N_SUN) is a three-dimensional array that con-
tains the list of lattice sites in A for every flavor and color index; Nsites(N_FL, N_SUN) is
then a bidimensional array that provides the number of lattice sites in the subsystem for every
flavor and color index; and the argument N_SUN must be omitted in the call.

For a subsystem whose degrees of freedom, for a given flavor index, have a common value
of color indexes, Predefined_0Obs_scal_Renyi_Ent can be called by providing List (:, N_-
FL) as a bidimensional array that contains the list of lattice sites for every flavor index. In this
case, Nsites (N_FL) provides the number of sites in the subsystem for any given flavor index,
while N_SUN(N_FL) contains the number of color indexes for a given flavor index.

Finally, a specialization exists for the simple case of a subsystem whose lattice degrees of
freedom are flavor- and color-independent. In this case, List (:) is a one-dimensional array
containing the lattice sites of the subsystem. Nsites is the number of sites, and N_SUN is
the number of color indexes belonging to the subsystem. Accordingly, for every element I of
List, the subsystem contains all degrees of freedom with site index I, any flavor index, and
1 ...N_SUN color index.

Mutual Information
The mutual information between two subsystems A and B is given by
I, = —In(Renyi_A) —In(Renyi_B) + In(Renyi_AB), (217)

where Renyi_A, Renyi_B, and Renyi_AB are the second Rényi entropies of A, B, and AU B,
respectively.
The measurements necessary for computing I, are obtained by:

Call Predefined_Obs_scal Mutual Inf(GRC, List_A, Nsites_A, List_B, Nsites_B, N_SUN,
ZS, ZP, 0Obs)

which returns the 24 Rényi entropies mentioned above, stored in the variable Obs. Here,
List_A and Nsites_A are input parameters describing the subsystem A — with the same con-
ventions and specializations described above — and List_B and Nsites_B are the correspond-
ing input parameters for the subsystem B, while N_SUN is assumed to be identical for A and
B.

8.5 Predefined trial wave functions

When using the projective algorithm (see Sec. 3), trial wave functions must be specified. These
are stored in variables of the WaveFunction type (Sec. 5.5). The ALF package provides a set
of predefined trial wave functions |Wr.; ,z)=WF_L/R, returned by the call:

Call Predefined_TrialWaveFunction(Lattice_type, Ndim, List, Invlist, Latt, Latt_unit,
N_part, N_FL, WF_L, WF_R)
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Twisted boundary conditions (Phi_X_vec=0.01) are implemented for some lattices in order to
generate non-degenerate trial wave functions. Here the marker “_vec” indicates the variable
may assume different values depending on the flavor (e.g., spin up and down). Currently
predefined trial wave functions are flavor independent.

The predefined trial wave functions correspond to the solution of the non-interacting tight
binding Hamiltonian on each of the predefined lattices. These solutions are the ground states
of the predefined hopping matrices (Sec. 8.2) with default parameters, for each lattice, as
follows.

8.5.1 Square
Parameter values for the predefined trial wave function on the square lattice:
Checkerboard = .false.
Symm = .false.
Bulk = .false.
N_Phi_vec =0
Phi_X_vec = 0.01d0
Phi_Y_vec = 0.d0
Ham_T_vec =1.d0
Ham_Chem_vec = 0.d0
Dtau = 1.4d0

8.5.2 Honeycomb

The twisted boundary condition for the square lattice lifts the degeneracy present at half-band
filling, but breaks time reversal symmetry as well as the C, lattice symmetry. If time reversal
symmetry is required to avoid the negative sign problem (that would be the case for the attrac-
tive Hubbard model at finite doping), then this choice of the trial wave function will introduce
a negative sign. One should then use the trial wave function presented in Sec. 7.6. For the
Honeycomb case, the trial wave function we choose is the ground state of the tight binding
model with small next-next-next nearest hopping matrix element t’ [135]. This breaks the Cs
symmetry and shifts the Dirac cone away from the zone boundary. Time reversal symmetry is
however not broken. Alternatively, one could include a small Kekule mass term. As shown in
Sec. 3.3 both choices of trial wave functions produce good results.

8.5.3 N-leg ladder

Parameter values for the predefined trial wave function on the N-leg ladder lattice:

Checkerboard = .false.
Symm = .false.
Bulk = .false.
N_Phi_vec =0
Phi_X_vec = 0.01d0
Phi_Y_vec = 0.d0
Ham_T_vec = 1.d0
Ham_Tperp_vec = 1.d0
Ham_Chem_vec = 0.d0
Dtau =1.d0

8.5.4 Bilayer square

Parameter values for the predefined trial wave function on the bilayer square lattice:
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Checkerboard = .false.
Symm = .false.
Bulk = .false.
N_Phi_vec =0
Phi_X_vec = 0.d0
Phi_Y_vec = 0.d0
Ham_T_vec = 1.d0
Ham_T2_vec = 0.d0
Ham_Tperp_vec = 1.d0
Ham_Chem_vec = 0.dO
Dtau = 1.d0

8.5.5 Bilayer honeycomb

Parameter values for the predefined trial wave function on the bilayer honeycomb lattice:

Checkerboard = .false.
Symm = .false.
Bulk = .false.
N_Phi_vec =0
Phi_X_vec = 0.d0
Phi_Y_vec = 0.d0
Ham_T_vec =1.d0
Ham_T2_vec = 0.d0
Ham_Tperp_vec = 1.d0
Ham_Chem_vec = 0.d0
Dtau =1.d0

9 Model Classes

The ALF library comes with five model classes: (i) SU(N) Hubbard models, (ii) O(2N) t-V
models, (iii) Kondo models, (iv) long-range Coulomb models, and (v) generic Z, lattice gauge
theories coupled to Z, matter and fermions. Below we detail the functioning of these classes.

9.1 SU(N) Hubbard models Hamiltonian_Hubbard_smod.F90

The parameter space for this model class reads:

&VAR_Hubbard I'l Variables for the Hubbard class

Mz = .T. ! Whether to use the M_z-Hubbard model: Nf=2; N_SUN must be
! even. HS field couples to the z-component of magnetization

ham_T = 1.d0 ! Hopping parameter

ham_chem = 0.d0 ! Chemical potential

ham_U = 4.40 ! Hubbard interaction

ham_T2 = 1.d0 ! For bilayer systems

ham_U2 = 4.d0 ! For bilayer systems

ham_Tperp = 1.d0 ! For bilayer systems

Continuous = .F. ! For continuous HS decomposition

ham_hO = 0.d0 ! Pinning. Local magnetic field on site i=0, orbital=1

/

In the above listing, ham_T and ham_T2 correspond to the hopping in the first and second layers
respectively and ham_Tperp is to the interlayer hopping. The Hubbard U term has an orbital
index, ham_U for the first and ham_U2 for the second layers. Finally, ham_chem corresponds to
the chemical potential. If the flag Mz is set to .False., then the code simulates the following
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SU(N) symmetric Hubbard model:

j+é’

N
2mi
" o 2mi (T Ayl
H= Z ZT(i,5),(j,5’)c(i,5),ae% 0 (.60
(i,6),(j,6") 0=1

N 2 N
+ Z ; % (Z [6&,5),06(1',5),0 - 1/2]) 3 Lisnoline
1 (o)

=1 (i,6)0=1
N/2 N
At A At A
+ho (Z €0,1),01%0,1),0,1 Z C(0,1),0,2%0,1),0,2) : (218)
o=1 o=N/2

The generic hopping is taken from Eq. (165) with appropriate boundary conditions given by
Eq. (166). The index i runs over the unit cells, 6 over the orbitals in each unit cell and o from
1 to N and encodes the SU(N) symmetry. Note that N corresponds to N_SUN in the code. The
chemical potential u is relevant only for the finite temperature code. Generically the flavor
index is set to unity. However, if the pinning field, h, is included, then the symmetry of the
Hamiltonian is reduced from U(N) to U(N/2) x U(N/2). In this case, one should set N_fl = 2.
The term ham_hO accounts for a local magnetic field at site i = 0 and orbital 6 = 1. This is
useful to probe for e.g. long-ranged magnetic order as discussed in Ref. [13]. Note that N is
required to be even if the pinning field is included.

If the variable Mz is set to .True., then the code equally requires N_SUN to be even and
simulates the following Hamiltonian:

N/2 j+é’

A AT 2l (T AL 4
A= D 202 Tamrgoiimese ™ e "0 C(7,5%,0.5
(i,6),(j,6') 0=15=1,2

U, N2 _. 2
a Z ZEI N (Z [é(ri,a),a,zé(i,a),a,z - é(ri,a),a,lé(i,a),a,l] )
1

o=1
N/2
AT A
K Z Z Z C(1,8),0,55(1,6),05
(i.6)0=1s=1,2
N/2 N
AF o A A

+ho (Z €0,1),0,150,1),0,1 ~ Z C(O,l),a,ZC(O,l),o,z) . (219)

o=1 o=N/2

Note that if Mz=.T. then the code automatically sets N_f1=2. Cleary at N = 2, both modes

correspond to the Hubbard model. For N even and N > 2 the models differ. In particular in

the latter Hamiltonian the U(N) symmetry is broken down to U(N/2) x U(N/2). When h, # 0

a local pinning field is applied at site i = 0 and orbital 6 = 1 to break the U(N) symmetry

explicitly. This is useful to probe for e.g. long-ranged magnetic order as discussed in Ref. [13].
It the variable Continuous=.T. then the code will use the generic HS transformation:

ad _ 1 —$2/2+v/20A
e = —— | doe (220)
\/217:J ¢

as opposed to the discrete version of Eq. 12. If the Langevin flag is set to false, the code will
use the single spin-flip update:

¢ — ¢+ Amplitude (& —1/2) (221)

where & is a random number € [0,1] and Amplitude is defined in the Fields_mod.F90
module. Since this model class works for all predefined lattices (see Fig. 9) it includes the
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Figure 11: The periodic Anderson model. Here we plot the equal-time spin structure
factor of the f-electrons at ¢ = (7, 7r). This quantity is found in the file SpinZ_eqJK.
The pyALF based python script Hubbard_PAM.py produces the data shown for the
L = 8 lattice. One sees that for the chosen value of Uy /t the competition between the
RKKY interaction and Kondo screening drives the system through a magnetic order-
disorder transition at V. /t ~ 1 [152].

SU(N) periodic Anderson model on the square and Honeycomb lattices. Finally, we note that
the executable for this class is given by Hubbard. out.

As an example, we can consider the periodic Anderson model. Here we choose the Bilayer_-
square lattice Ham_U = Ham_T2 = 0, Ham_U2= Uy, Ham_tperp=V and Ham_T= 1. The pyALF
based python script Hubbard_PAM.py produces the data shown in Fig. 11 for the L=8 lattice.

9.2 SU(N) t-V models Hamiltonian_tV_smod.F90

The parameter space for this model class reads:

&VAR_tV !'l Variables for the t-V class
ham_T = 1.d0 ! Hopping parameter

ham_chem = 0.d0 ! Chemical potential

ham_V = 0.5d0 ! interaction strength
ham_T2 = 1.d0 ! For bilayer systems

ham_V2 = 0.5d0 ! For bilayer systems
ham_Tperp = 1.d0 ! For bilayer systems
ham_Vperp = 0.5d0 ! For bilayer systems

/

In the above ham_T and ham_T2 and ham_Tperp correspond to the hopping in the first and
second layers respectively and ham_Tperp is to the interlayer hopping. The interaction term
has an orbital index, ham_V for the first and ham_V2 for the second layers, and ham_Vperp for
interlayer coupling. Note that we use the same sign conventions here for both the hopping
parameters and the interaction strength. This implies a relative minus sign between here and
the Us interaction strength of the Hubbard model (see Sec. 9.1). Finally ham_chem corresponds
to the chemical potential. Let us introduce the operator

Y
i (T4 Ay

N
bi,6).6) = Z Ciig)ol ™ 0 C.one THE (222)
o=1
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The model is then defined as follows:

Vii s rs st

A 5 (i,6),(3,0") (1 2

A= 3 Tapgobansont 2, — v Cuonoen)
(,6),G:6") (,6),G:6")

N
At N
—H Z Z (1,6),0%(1,6),0 ° (223)

(i,6)o=1

The generic hopping is taken from Eq. (165) with appropriate boundary conditions given by
Eq. (166). The index i runs over the unit cells, 6 over the orbitals in each unit cell and o
from 1 to N, encoding the SU(N) symmetry. Note that N corresponds to N_SUN in the code.
The flavor index is set to unity such that it does not appear in the Hamiltonian. The chemical
potential u is relevant only for the finite temperature code. An example showing how to run
this model class can be found in the pyALF based Jupyter notebook tV_model . ipynb.

As a concrete example, we can consider the Hamiltonian of the t-V model of SU(N) fermions
on the square lattice,

N
FI=—tZi)m—%Z(%«,ﬁ)Z—MZZéZgéi,a, (224)
(wj)

(i,j) i o=1

which can be simulated by setting ham_T = t, ham_V = V, and ham_chem = u. At half-band
filling u = 0, the sign problem is absent for V > 0 and for all values of N [75,153]. For even
values of N no sign problem occurs for V > 0 and arbitrary chemical potentials [74].

Note that in the absence of orbital magnetic fields, the model has an O(2N) symmetry.
This can be seen by writing the model in a Majorana basis (see e.g. Ref. [21]).

9.3 SU(N) Kondo lattice models Hamiltonian_Kondo_smod.F90

The Kondo lattice model we consider is an SU(N) generalization of the SU(2) Kondo-model
discussed in [31,32]. Here we follow the work of Ref. [50]. Let T% be the N? — 1 generators
of SU(N) that satisfy the normalization condition:

1
Te[TT?] = 700 (225)
For the SU(2) case, T® corresponds to the T = %0 with o a vector of the three Pauli spin
matrices, Eq. (197). The Hamiltonian is defined on bilayer square or honeycomb lattices, with
hopping restricted to the first layer (i.e conduction orbitals c;r) and spins, f-orbitals, on the
second layer.

N _
. 2ni (J .
r_ At 3 [l Adly _ AT A
H=-—t E E (cwe 0 cj’U+H.c. w E CioCio
(i,j)o=1 Lo

N2-1
U, o NY o2 racmaf
+N Ei (ni—z) +WE Ti Ti . (226)

i,a=1

In the above, i is a super-index accounting for the unit cell and orbital,

N N N
tee= el 1o b, T = DT A Te f . and A=) el e (227)
i i,oc " o,0' 7,0 i i,oc “o,0'7i,0"” i i,0 1,0°
o,0'=1 o,0'=1 o=1
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Finally, the constraint

(228)

wa

holds. Some rewriting has to be carried out so as to implement the model. First, we use the
relation:

N
2

1 1
TgﬁTg /5, == 5 (5a,[5’5a/,[5 - N5asﬁ5a/’ﬁ/)’

to show that in the unconstrained Hilbert space,

a

with

In the constrained Hilbert space, ﬁif = N /2, the above gives:

2J — A f J A A \2 A LA \2 J
F; Teefs —4—N[(D3+Di) +(1D2—1Di)]+z. (229)

The perfect square form complies with the requirements of ALE We still have to impose the
constraint. To do so, we work in the unconstrained Hilbert space and add a Hubbard U-term
on the f-orbitals. With this addition, the Hamiltonian we simulate reads:

N 2
A o G [ adly o N
Hove = 2,0 (e, B4 0e,  +hc ) - DX r= > (w-3)
(i.,j)o=1
J A+ A 2 LAt A 2 /\f N 2
— 2[5 +, ) + (1D~ i) ]wz(ni —5) . (230)
The key point for the efficiency of the code, is to see that

2
[PIQMC, (ﬁ{ - %) } =0 (231)

such that the constraint is implemented efficiently. In fact, for the finite temperature code at
inverse temperature f3, the unphysical Hilbert space is suppressed by a factor e Ur/N .

The SU(2) case

The SU(2) case is special and allows for a more efficient implementation than the one described
above. The key point is that for the SU(2) case, the Hubbard term is related to the fermion

parity,

of

g (DN 41

(Al —1) =—5— (232)
A g )

such that we can omit the current-term (iDl.r —1D, ) without violating Eq. (231). Asin Refs. [31

32,154], the Hamiltonian that one will simulate reads:
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A A Zm fJA dl A ’\C
H=—t Z c i - tHe |+— Z (

(i.j).o

E,HtUc

2
__Z(Z: fAi,Taéi,a) +%Z(ﬁ{_1)2- (233)

The relation to the Kondo lattice model follows from expanding the square of the hybridization
to obtain:

Y ) a¢ of | oamc anf _ axc aXf  ayie aV.f ’
H="Huy, +JZ(Si S TER PR PRk M Ml M )+”HUf, (234)
where the n-operators relate to the spin-operators via a particle-hole transformation in one
spin sector:

A

Ny = 15_131?‘15 with f’_l“ =(— l)li”YC and P1¢ & P= ¢, . (235)
Since the 4 and $/ operators do not alter the parity [(—1)ﬁi ] of the f -sites,
(7.7, ] =o0. (236)

Thereby, and for positive values of U, doubly occupied or empty f -sites — corresponding to
even parity sites — are suppressed by a Boltzmann factor e #Yf/2 in comparison to odd parity
sites. Thus, essentially, choosing BU; adequately allows one to restrict the Hilbert space to
odd parity f-sites. In this Hilbert space, #*f = %*f = %*»f = 0 such that the Hamiltonian
(233) reduces to the Kondo lattice model.

QMC implementation

The name space for this model class reads:

&VAR_Kondo I'l Variables for the Kondo class

ham_T =1.d0 ! Hopping parameter

ham_chem = 0.d0 ! Chemical potential

ham_Uc = 0.d0 ! Hubbard interaction on c-orbitals Uc
ham_Uf = 2.d0 ! Hubbard interaction on f-orbials Uf
ham_JK = 2.d0 ! Kondo Coupling J

/

Aside from the usual observables we have included the scalar observable Constraint -

scal that measures
S(#f N)?

1
Us has to be chosen large enough such that the above quantity vanishes within statistical
uncertainty. For the square lattice, Fig. 12 plots the aforementioned quantity as a function of

Uy for the SU(2) model. As apparent <Zl (ﬁ{ —N/2)2> oc e PUs/2,

9.4 Models with long range Coulomb interactions Hamiltonian_LRC_smod.F90

The model we consider here is defined for N_FL=1, arbitrary values of N_SUN and all the pre-
defined lattices. It reads:

= Z ﬁ: Ti,jéi. 2mi flfA(l)dlA I Z (ﬁl ) (ﬁj — %) _“Z ;. (238)

i,j o=1 i
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Figure 12: Left: Suppression of charge fluctuations of the f-orbitals as a function of
Us. Right: When charge fluctuations on the f-orbitals vanish, quantities such as the
Fourier transform of the f spin-spin correlations at ¢ = (7, ) converge to their KLM
value. Typically, for the SU(2) case, fU; > 10 suffices to reach convergent results.
The pyALF script used to produce the data of the plot can be found in Kondo . py

In the above, i = (i,6;) and j = (j, 6;) are super-indices encoding the unit-cell and orbital

and 71; = 2521 ézoéi,o For simplicity, the interaction is specified by two parameters, U and
a that monitor the strength of the onsite interaction and the magnitude of the Coulomb tail
respectively:

ifi=j

(239)

1

lli=j+6;—6;l|

Here d,;;, is the minimal distance between two orbitals. On a torus, some care has be taken
in defining the distance. Namely, with the lattice size given by the vectors L; and L, (see
Sec. 8.1),

llill= min_[i—n;L; —nyL,|. (240)
ny,Ny€Z

The implementation of the model follows Ref. [51], but supports various lattice geometries.
We use the following HS decomposition:

e ATHY oc f l_[ dqbl.e_NTM PR iATd’i(ﬁi_%)’ (241)
i

where ¢; is a real variable, V is symmetric and, importantly, has to be positive definite for the
Gaussian integration to be defined. The partition function reads:

Wi(9)

NAT — ~ . n
7 oc J l_[ dd’i,r e 4 T, ¢i,rvl-’j1¢j,r Tr [l_[ o—ATHy e—zi lAT¢i’T(ni_%)i|’ (242)
i T

Wi (9)

such that the weight splits into bosonic and fermionic parts.
For the update, it is convenient to work in a basis where V is diagonal:

Diag (A", Ayain) = 0T VO (243)

with OTO =1 and define:
=200, . (244)
j
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On a given time slice 7, we propose a new field configuration with the probability:

TO(n — 1) = IT; [PPB(T/L{,TU) +(1=P)6(n;r, — nﬁ,fu)] fort =1, (245)
6(niz — ﬂi,f) for T # 1,
where
_NAt o
Pg(n;c)oce M, (246)

P €[0,1] and 6 denotes the Dirac 6-function. That is, we carry out simple sampling of the
field with probability P and leave the field unchanged with probability (1 — P). P is a free
parameter that does not change the final result but that allows one to adjust the acceptance.
We then use the Metropolis-Hasting acceptance-rejection scheme and accept the move with
probability

[ T°(n" = mMWs(nIWs(n) )— _(We(n)
min (o= i) = (L) (247)
where

Wg(n) = e 4 ZizMe/M and We(n) =Tr [l_[ e ATHT g~ 2l iMO"’f”f’f(ﬁi_%)] . (248)
T

Since a local change on a single time slice in the 1) basis corresponds to a non-local space
update in the ¢ basis, we use the routine for global updates in space to carry out the update
(see Sec. 2.2.3).

QMC implementation

The name space for this model class reads:

&VAR_LRC !l Variables for the Long Range Coulomb class
ham_T =1.0 ! Specifies the hopping and chemical potential
ham_T2 =150 ! For bilayer systems

ham_Tperp =1.0 ! For bilayer systems

ham_chem =1.0 ! Chemical potential

ham_U =4.0 ! On-site interaction

ham_alpha =0.1 ! Coulomb tail magnitude

Percent_change = 0.1 ! Parameter P

/

By setting a to zero we can test this code against the Hubbard code. For a 4 x 4 square
lattice at Bt = 5, U/t = 4, and half-band filling, Hamiltonian_Hubbard_smod.F90 gives
E =-13.1889 £ 0.0017 and Hamiltonian_LRC_smod.F90, E = —13.199 £+ 0.040. Note that
for the Hubbard code we have used the default Mz = .True.. This option breaks SU(2) spin
symmetry for a given HS configuration, but produces very precise values of the energy. On the
other hand, the LRC code is an SU(2) invariant code (as would be choosing Mz = .False.)
and produces more fluctuations in the double occupancy. This partly explains the difference in
error bars between the two codes. To produce this data, one can run the pyALF python script
LRC.py.
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9.5 Z, lattice gauge theories coupled to fermion and Z, matter Hamiltonian_-

Z2_smod.F90

The Hamiltonian we will consider here reads

ﬁ:_tzz Z é?i,j)(\ilja ]O‘+Hc) ‘U’Z i,o 10' gza(l

(i) i Lo
The model is defined on a square lattice, and describes fermions,
A -i‘ A A _
{#,.9, } =6080.0, {¥0. 9 .} =0,

coupled to bond gauge fields,

AZ _ 1 0 AX _ 01 AZ AX _ -4 Ax
U(tf)‘[o —1}’0(1&1‘)_[1 0}’{0(1',1‘)’0(:",1")}_2(1_5(131'),(1",1")) )9 (@,

and Z, matter fields:

R 1 0 . 01 Az A
rf:[o _1], T;f:[l 0}, (#2425} =2(1-5;)

Fermions, gauge fields and Z, matter fields commute with each other.
Importantly, the model has a local Z, symmetry. Consider:

— S “710AX AX AX AX AX
( 1) 1 O l+axo-i,i—axo-i,i+ayo-"

One can then show that Qf =1 and that

[Q;,H]=0.

2
(8,8, + 1)+ 5 2 2 (8%, -1/2)|

')

(249)

(250)

(251)

(252)

(253)

(254)

The above allows us to assign Z, charges to the operators. Since {Qi, \flja} = 0 we can assign

a Z, charge to the fermions. Equivalently %} has a Z, charge and 6‘1.2’]. carries Z, charges
at its ends. Since the total fermion number is conserved, we can assign an electric charge
to the fermions. Finally, the model has an SU(N) color symmetry. In fact, at zero chemical
potential and U = 0, the symmetry is enhanced to O(2N) [21]. Aspects of this Hamiltonian
were investigated in Refs. [21,25,26,28-30] and we refer the interested user to these papers

for a discussion of the phases and phase transitions supported by the model.

QMC implementation

The name space for this model class reads:

&VAR_Z2_Matter I'l Variables for the Z_2 class
ham_T = .0 ! Hopping for fermions

ham_TZ2 =1.0 ! Hopping for orthogonal fermions
ham_chem = 0.0 ! Chemical potential for fermions
ham_U = 0.0 ! Hubbard for fermions

Ham_J =1.0 ! Hopping Z2 matter fields

Ham_K =1.0 ! Plaquette term for gauge fields
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Ham_h =1.0 ! sigma"x-term for matter
Ham_g =1.0 ! tau"x-term for gauge
Dtau = 0.1d0 ! Thereby Ltrot=Beta/dtau
Beta 10.d0 ! Inverse temperature
Projector = .False ! To enable projective code
Theta = 10.0 ! Projection parameter

/

We note that the implementation is such that if Ham_T=0 (Ham_TZ2=0) then all the terms
involving the matter field (Z, gauge field) are automatically set to zero. We warn the user
that autocorrelation and warmup times can be large for this model class. At this point, the
model is only implemented for the square lattice and does not support a symmetric Trotter
decomposition.

The key point to implement the model is to define a new bond variable:

,CLZ('I.’].) = %f%;. (255)
By construction, the (7 i bond variables have a zero flux constraint:
‘a(i,i+ax)ﬂ?i+ax,i+ax+ay)‘a?1+ax+ay,l+ay) A?H—ay, ) =1 (256)

Consider a basis where (% ) and 17 are diagonal with eigenvalues u; ;) and 7; respectively.

The map from {7;} to { Wi, j) } is unique. The reverse however is valid only up to a global sign.
To pin down this sign (and thereby the relative signs between different time slices) we store
the fields u; ;) at every time slice as well as the value of the Ising field at a reference site
T;—g- Within the ALE this can be done by adding a dummy operator in the Op_V list to carry
this degree of freedom. With this extra degree of freedom we can switch between the two
representations without loosing any information. To compute the Ising part of the action it is
certainly more transparent to work with the {7;} variables. For the fermion determinant, the
{u(i,j)} are more convenient.
Since flipping 17 amounts to changing the sign of the four bond variables emanating from
site i, the identity:
A = B 0 . (257)

“ﬁg+axM1+axg+ax+ay“1+ax+ay4+ay

holds. Note that { (U),%J,)} = 2(1 — S(i,ﬁ,(i/’j/)) ? >u( iy such that applying ﬂ’((i’j) on

an eigenstate of i% W) flips the field.
The model can then be written as:

ﬁ=_tzzz (l,])(qJ:a\IjJU+HC) leijl}iU\ijiﬂ_gZ +KZ l_[ Al”
i,o

(i.j) O (i.j)edo

o

z AZ X X 7y X

Wi —h Z 03 iva Diva, iva,+a, Biva, v, ita, ita, i
1

2
0, (8, 1)+ 1 3 S, 1/2) (259

i g

)

+J >0
{i,j)

(i,j)o

subject to the constraint of Eq. (256).

To formulate the Monte Carlo, we work in a basis in which (4% (i) 1z 5%

pand & G jy are diagonal:

0 1) =wapls), 6 nls) =o@pls),  tols) = Tols) (259)

with s = ({u(i’j)}, {aﬁ’j)}, TO). In this basis,

L
z= > Sl []_!e—MHF(EJ], (260)
T=

§1’... ’§Lr
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where
L
SO({‘ST}):_IH[I_[ Seprle” MHIls >:|
=1
—_ ~Z A Z
DICTES O B PR DN AT
(i) O (i,j)eoo (i)
_hz‘ui,i+ax'a?+ax,i+ax+ay'a‘;c+ax+ay,i+ay
i
and

Hp(s) =— tz, Z O (i j) (\ilza\flj,a + H.c.) — ,uz ‘i/za\f/i’o
i,o0

(i.j).o

2
03Ty (8,9, +1e) + 23 [Z(\pga . 1/2)] .

(i.j)o i o

In the above, |s;, ,,) = Is;). With a further HS transformation of the Hubbard term (see
Sec. 8.3.1) the model is readily implemented in the ALFE. Including this HS field, [, [see Eq. (12)]
yields the configuration space:

C={uppetAownt {70} {lic}) (261)

where the variables u, T and o take the values =1 and [ the values £1, £2.

The initial configuration as well as the moves have to respect the zero flux constraint of
Eq. (256). Therefore, single spin flips of the u fields are prohibited and the minimal move
one can carry out on a given time slice is the following. We randomly choose a site i and
propose a move where: Ujiiq, = —Mii+a,> Miji-a, = ~Mii-a, Miji+a, = ~Miji+a, and
Wiji—a, = —Miji-a,- One can carry out such moves by using the global move in real space
option presented in Sec. 2.2.3 and 5.7.1.

9.5.1 Projective approach

The program also supports a zero temperature implementation. Our choice of the trial wave
function does not break any symmetries of the model and reads:

[p) = [W5) ® j) 1+)iij) ®i l+)i- (262)

For the fermion part we use a Fermi sea with small dimerization to avoid the negative sign
problem at half-filling (see Sec. 7.6). For the Ising part the trial wave function is diagonal in
the 6'2:. i and 17 operators:

Guplthin =1Ha) and t7+H); = [+);. (263)

An alternative choice would be to choose a charge density wave fermionic trial wave func-
tion. This violates the partial particle-hole symmetry of the model at U = u = 0 and effectively
imposes the constraint Q; = 1.

109



SciPost Physics Codebases Submission

9.5.2 Observables

Apart from the standard observables discussed in Sec. 8.4 the code computes additionally

(62(1.)].>> and <%;F>,

which are written to file X_scal;

(6% ... \6F o 6% o)
(i,i+a,)” (i+ayita,+a,) "~ (i+a,+a,,i+a,)” (i+a,,i)

and

>
w0

A AZ Nz
<‘u(i,i+ax)‘u<i+ax,i+ax+ay)‘U'<i+ax+ay,i+ay)‘u(i+ay,i)>’

written to file Flux_scal; and also (Q ) (file Q_scal). Note that the flux over a plaquette of
the (% ) is equal to unity by construction so that this observable provides a sanity check. The

file Q_eq contains the two-point correlation {Q;Q i) = Q) Q ;) and Greenf _eq the equal-time

fermion Green function (% Z\Iﬂ 22y, ).
i,o ] j,o

9.5.3 A test case: Z, slave spin formulation of the SU(2) Hubbard model

In this subsection, we demonstrate that the code can be used to simulate the attractive Hubbard
model in the Z,-slave spin formulation [155]:

=—t Z el ot o —U D (i —1/2) (g —1/2). (264)
i
In the Z, slave spin representation, the physical fermion, ¢; ,, is fractionalized into an Ising
spin carrying Z, charge and a fermion, \f!i’a, carrying Z, and global U(1) charge:
AT prgT
S ‘;.’\I/l.’a. (265)

To ensure that we remain in the correct Hilbert space, the constraint:
A — (= 1)Za oo — 0 (266)

has to be imposed locally. Since (Tf)z =1, the latter is equivalent to
i = wr ()Xo ictio = 1, (267)

Using
(_1)23 ‘I’:,U‘I’i,o = l_[(l _ 2\111' O'\Ill a) — 41_[( io ¢ o 1/2), (268)

the Z, slave spin representation of the Hubbard model now reads:
Hyy=—t > #2429 & — QZ%X (269)
Z, — i“jri,o j,0 4 i
~ n
Importantly, the constraint commutes with Hamiltonian:

[Ay,,Qi]=0. (270)

Hence one can foresee that the constraint will be dynamically imposed (we expect a finite-
temperature Ising phase transition below which Q; orders) and that at T = 0 on a finite lattice
both models should give the same results.

A test run for the 8 x 8 lattice at U/t =4 and 3t = 40 gives:
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k <nk)H <nk)sz

(0,0) 1.93348548 £0.00011322 1.93333895 +0.00010405
(m/4,7/4) 1.90120688 +0.00014854 1.90203726 +0.00017943
(m/2,7/2)  0.99942957 +0.00091377 1.00000000 £ 0.00000000

(3m/4,31/4) 0.09905425 +0.00015940 0.09796274 + 0.00017943

(m, m) 0.06651452 £0.00011321 0.06666105 &+ 0.00010405

Here a Trotter time step of ATt = 0.05 was used in order to minimize the systematic error
which should be different between the two codes. The Hamiltonian is invariant under a par-
tial particle-hole transformation (see Ref. [21]). Since Qi is odd under this transformation,
(Q;) = 0. To asses whether the constraint is well imposed, the code, for this special case,
computes the correlation function:

So(@) = _(QiQo)- 271)

i
For the above run we obtain S;(q = 0) = 63.4+1.7 which, for this 8 x 8 lattice, complies with
a ferromagnetic ordering of the Ising Q; variables. The pyALF python script that produces this
data can be found in Z2_Matter.py. This code was used in Refs. [28,29].
9.6 Spin Peierls Hamiltonian_Spin_Peierls_smod.F90

The Hamiltonian that we will consider here is given by:

\ A A P2k,
Hop= > 3 (1 +Qb)si~sj+ﬁ+£Q§ (272)
b=(i.j)
with
a &B '3aﬂ“ ay2_3 DA 6b’b/
(52,80 ]= 511121:6 '3, (8) = and [Py, Qp]= = (273)

The model is defined on a square lattice, and the sum runs over nearest neighbor bonds
b = (i,j). Including a coupling constant g in front the Einstein phonon (Az(l-’ﬂ is superfluous
since it can be set to unity by carrying out a canonical transformation of (A2<i’ hE

To implement the spin-Peierls Hamiltonian in the ALF library, we fermionize the spin de-
grees of freedom and use the relation

2
A 1 . .
4 (Zflo +fJ]U 10) +4_1=Si'sj 274)

that holds in the odd parity, (—1)ZU fighio = —1, sector.
In the Monte Carlo simulation, we enforce the odd parity constraint by adding a Hubbard
U term. As a consequence, the fermion Hamiltonian we consider reads:

2 2

A 1 At 2 PO P )

Houme = b; )Jb (1+Qp) (Z 4 (Zf oo +fj,rofi,0) ) * ﬂ + Z(n -1

=(1,J
(275)
A- A Y £ A

where A; = >, f.' f, . As for the Kondo lattice model, [(—1)fofwfw,HQMc] = 0 such that
the projection onto the physical odd parity Hilbert space turns out to be very efficient. In this

Hilbert space:

A, = Hgp. 276
QMC( 1)20' 1010— 1 sP ( )
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For the Monte-Carlo formulation, we consider a basis where Q;|¢) = ¢, |¢) such that after
Trotterization, the partition function reads:

Zo< 3, J [ Ldon- ] [rto] [ro e 277)

lb,‘r li,‘r

Tr [l_[ [TeV™o- VATl Ky [1 en(zi,f)m(ﬁi_l)]
T b

1

with

M ¢b,fr+1 _¢b,1 2 k J 2
s¢=;m E( s ) +5(¢b+4—2) : (278)
In the above, each site hosts a discrete HS field [; ; field and each bond discrete bond, [}, ., and
phonon ¢, . fields. The phonon fields satisfy periodic boundary conditions in the temporal
direction: ¢y, 1= Pp 1.

The ALF implementation of the above Hamiltonian is straightforward, and provides an
example where the type t=4 operators introduced in 5.2 become very handy. A plain vanilla
implementation of the code can be found in Hamiltonian Spin_Peierls_smod.F90. It
requires N_FL=1 and N_SUN = 2 corresponding to an SU(2) spin symmetric implementation
and does not include a symmetric Trotter decomposition. Aside from the standard parameters,
the model specific name space reads:

&VAR_Spin_Peierls
ham_Jx = 1.0
Ham_Jy = 1.0

Coupling in x-direction
Coupling in y-direction

ham U =1.0 Hubbard U for constraint. Typically beta U = 10
ham_Lambda = 0.1 Electron-phonon interaction

Ham_omegaO = 0.25 Phonon frequency

/

Here, the electron phonon interaction as well as the phonon frequency are defined as

1 \| K
k = ﬂ and Wy = M (279)
respectively.

We have tested the code for an L = 16 chain at fJ = 8, wy = 0.25 and various values
of the electron-phonon interaction. As can be seen in Fig. 13 the results compare remarkably
well to independent calculations based on the so called SSE algorithm with retarded inter-
actions [156]. The Hamiltonian Hamiltonian_Spin_Peierls_smod.F90 includes spin-spin
correlations as well as phonon correlations, both at equal and imaginary time displaced. Scalar
observables Phi_scal contain the <Qb> for bond in the x- and y-directions.

10 Maximum Entropy

If we want to compare the data we obtain from Monte Carlo simulations with experiments,
we must extract spectral information from the imaginary-time output. This can be achieved
through the maximum entropy method (MaxEnt), which generically computes the image A(w)
for a given data set g(7) and kernel K(7, w):

glt)= J ™ dwK (7, w)A(w). (280)

Wstart
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L=16,U/t =1,wy=0.25,4=8,A=0 L=16,U/t =1,wy=10.25,4=8,A=0.3
4 ‘. ALF — = 4 ALF — =
[ SSE a1 | [ SSE & |
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Figure 13: Simulations of the one-dimensional spin-peierls chain. For the ALF simula-
tions, we have used AtJ = 0.1. The reference data was produced with the SSE algo-
rithm with retarded interaction introduced in Ref. [157] and adapted to spin-Peierls
problems in [156]. As apparent the agreement is excellent, both for the Heisenberg
chain at A = 0.0 and at finite electron phonon coupling, A = 0.3

The ALF package includes a standard implementation of the stochastic MaxEnt, as formulated
in the article of K. Beach [98], in the module Libraries/Modules/maxent_stoch_mod.F90.
It also supports an implementation of the Bayesian based classic maximum entropy method as
formulated in Refs. [99,100], in the module Libraries/Modules/maxent_mod.F90 Its wrap-
per is found in Analysis/Max_SAC.F90 and the Green function is read from the file g_dat,
produced by the analysis program Analysis/ana.out analysis program. The logical variable
Stochastic specified in the parameters file toggles between the two analytical continuation
approaches.

In the next section we provide a quick guide on how this facility can be used, followed by
sections with more detailed information.

10.1 Quick Start

* Before running the simulation, set in the file parameters the variable Ltau=1, so that
the necessary time-displaced Green functions are calculated; also set a large enough
number of bins

* Also in the parameters file, set N_Cov=0 (for shorter runs; N_Cov=1 might give more
reliable error estimates)

* Run the Monte Carlo simulation and the analysis:
$ALF_DIR/Prog/ALF.out
$ALF_DIR/Analysis/ana.out *

* Then enter the desired results directory, e.g., Green_0.00_0.00 (they’re named in the
pattern Variable_name_kx_ky) and copy the parameter file to it:
cd Green_0.00_0.00/ && cp ../parameters .

¢ Run MaxEnt:
$ALF_DIR/Analysis/Max_SAC.out

For many purposes it is practical to script some of the steps above, and an example of such
a script can be found in $ALF_DIR/Scripts_and_Parameters_files/Spectral.sh.
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10.2 General setup

The stochasic approach

The stochastic MaxEnt is essentially a parallel-tempering Monte Carlo simulation. For a dis-
crete set of T; points, i € 1---n, the goodness-of-fit functional, which we take as the energy

reads
n

PROED N CAEFICN] o G DI FICHEFIEH] } (281)

ij=1

with g(t;) = fdcoK (7;, w)A(w) and C the covariance matrix. The set of N, inverse temper-
atures considered in the parallel tempering is given by a,, = a,R™, form =1---N, and a
constant R. The default model is, D(w), is required to have the same sum-rule as the spectral
function,

J dwD(w) = J dwA(w) = M. (282)
Since the default model is a positive function, the function
1 w
x(w)=— J dw'D(w”) (283)
My J_oo

is invertible (provided that the default model does not vanish in the considered frequency
range) and takes values x € [0, 1]. Consider

~Alw'(¥)
Tl(X’) = m, (284)
then
1 L 1
f dxn(x)=1 and g(t)= MOJ dxK (7, w1 (x))n(x). (285)
0 0

The phase space corresponds to all possible spectral functions n(x) satisfying a given sum rule
and the required positivity. Finally, the partition function reads Z = fDn e~"(M [98], such
that for a given “inverse temperature” a, the image is given by:

f Dn e_alz(")n(x)

{n(x)) = [ Dreer (286)
In the code, n(x) is parametrized by a set of N, Dirac 6 functions:
Ny
n(x)=Zai5(x—xi). (287)
i=1
The code samples n(x) and at the end, builds the spectral function:
A(w) =n(x(w))D(w). (288)

To produce a histogram of A(w) we divide the frequency range in Ndis intervals.

Besides the parameters included in the namelist VAR_Max_Stoch set in the file parameters
(see Sec. 5.7), also the variable N_cov, from the namelist VAR_errors, is required to run the
maxent code. Recalling: N_cov = 1 (N_cov = 0) sets that the covariance will (will not) be
taken into account.
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The Bayesian approach

It is beyond the scope of this documentation to provide a full account of the classic Maximum
Entropy method, and the interested reader is referred to Refs. [99,100] for detailed accounts.
Bayes theorem states that the combined probability of events X,Y,Z ( P(X,Y,Z) ) is given by
the probability of X given Y,Z (P(X|Y,Z) ) times the prior probability of Y,Z (P(Y, Z)). Let
us apply this to investigate the combined probability of A, a given the combined Default D and
Monte-Carlo data G. The result reads:

P(A,a|G,D)=P(G|A, D, a)P(A|D,a)P(alD)/P(G|D) (289)

We will assume that D and a are not correlated, such that P(a,D) = P(a)P(D). As a con-
sequence, P(a|D) = P(a). Similarly if we assume that G and D are not correlated, then
P(G|D) = P(G). In the Bayesian approach, the likelihood function P(G|A, m, a) reads:

1 2
P(GIA,D,a) = ——————¢ ¥ W/2 (290)
(2m)n/24/det C

As apparent it is independent on the default and value of a. The entropic prior reads:

P(AID, a) = e#54D) with S(A,D) = J dw(A(w)—D(w)—A(w)logg((c:)))) (291)

Normalization is insured by the measure DA=[[; 4/ ﬁ% with A; = A(w;)Aw.
Putting everything together, we obtain:

P(A a|G,D) = ﬁe%“) with Q(4, a) = %S(A,D) —72(4)/2 (292)

and
1 Pla) 1

Z(a)  P(G)(2m)v/24/detC

The last piece of information we need, is the prior probability of a. We could for instance
choose a constant, reflecting the fact that we have no prior information. Alternatively we can
use Jeffrey’s prior P(a) = a. This choice does not lead to important differences since the
integration measure already includes a high power of a.

For a given value of a, one can maximize P(A, a|G, D) with respect to A, so as to obtain the
most probable image, A*(a). However this leaves us with the free parameter a. The probability
of a given G and D reads

(293)

P(alG,D) = J DA P(A,a|G, D). (294)

In the classic Maximum Entropy method, a is chosen so as to maximize P(a|G, D). Denoting
this value of a by a*, the final image produced by the classic Maximum Entropy method is
A*(a¥).

Input files

The parameters for the Maximum entropy are listed in the parameters file detailed in Sec. 5.7.1.
In the namespace VAR_errors the variable N_Cov triggers the use of the covariance matrix,
and in the namespace VAR_Max_Stoch the variable Stochastic toggles between the stochas-
tic and classic analytical continuation schemes. The reader is referred to Sec. 5.7.1 for a
complete description of the parameters.
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In addition to the aforementioned parameter file, the MaxEnt program requires the output
of the analysis of the time-displaced functions. The program Anaylsis/ana.out (see Sec. 6.3)
generates, for each k-point, a directory named Variable_name_kx_ky. In this directory the
file g_dat contains the required information for the MaxEnt code, which is formatted as fol-
lows:

<# of tau-points> <# of bins > <beta> <Norb> <Channel>
do tau = 1, # of tau-points
T, Eﬂa(Sﬁﬁﬂ(k>T)), error

enddo
do taul = 1, # of tau-points

do tau2 = 1, # of tau-points

C(71,72)

enddo

enddo

The specification of the default model is optional. If the file Default exists then this default
will be used. We note that the default model corresponds to the output of the MaxEnt code.
That is S(q, w) for particle-hole quantities, A(k, w) in the particle channel, etc. eThe format
of the input is identical to that if the output file Green containing the spectral function (see
below). Hence the result of one run can be used as a default model for another run. This turns
out to be very useful when carrying out temperature scans. Alternatively, the default model
can be specified as

do om = 1, # of frequencies
read om, D(om)
enddo

The code will automatically detect one of the two aforementioned formats. If no default is
provided, then a flat default model with correct sum rule is used.

Output files

The code produces the following output files.

The stochastic approach

* The files Aom_n contains the average spectral function at inverse temperature «,. This
corresponds to (A,(w)) = % f DA(w) e~ %X 2(A)A(co). The file contains three columns: w,
(An(w)), and A(Ap(w)).

* The files Aom_ps_n contain the average image over the inverse temperatures a,, to ay,,
see Ref. [98] for more details. Its first three columns have the same meaning as for the
files Aom_n.

* The file Green contains the Green function, obtained from the spectral function through

(T A
G(co)— nf_oodﬂco—ﬂ+i5’ (295)

where 6§ = Aw = (Wepg — Wstare)/Ndis and the image corresponds to that of the file
Aom_ps_n with n = N, —10. The first column of the Green file is a placeholder for
post-processing. The last three columns correspond to w, Re G(w),Im G(w). The above
serves as a smoothing procedure of the spectral function. In particular if § = 0" then
Im G(w) =A(w).
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* One of the most important output files is energies, which lists a,, (¥2), A{y?).

. N
* best_fit gives the values of q; and w; (recall that A(w) = »,. 7, a;6 (v — w;)) corre-
sponding to the last configuration of the lowest temperature run.

* The file data_out facilitates crosschecking. It lists 7, g(7), Ag(7), and f dwK (7, w)A(w),
where the image corresponds to the best fit (i.e. the lowest temperature). This data
should give an indication of how good the fit actually is. Note that data_out contains
only the data points that have passed the tolerance test.

* Two dump files are also generated, dump_conf and dump_Aom. Since the MaxEnt is a
Monte Carlo code, it is possible to improve the data by continuing a previous simulation.
The data in the dump files allow you to do so. These files are only generated if the
variable checkpoint is set to .true..

e The file Info_MaxEnt lists a summary used parameters and best y2.

The essential question is: Which image should one use? There is no ultimate answer to
this question in the context of the stochastic MaxEnt. The only rule of thumb is to consider
temperatures for which the y?2 is comparable to the number of data points.

The Bayesian approach

The output for the classic MaxEnt contains the file Data_out_cl, the image Green_c1 as well
as a summary of the parameter used in the file Info_MaxEnt_cl. The format od these files
does not differ from the stochastic maxent code.

Scripts

In the directory Scripts_and_Parameters_files there is a shell script Spectral.sh that
can help for the running of the code, and production of plots. The included shell script pro-
duces the plots of Fig. 14, and will have to be adapted (i.e. set of k-points) for different system
sizes.

10.3 Single-particle quantities: Channel=P

For the single-particle Green function,

(€ (0)el0) = J dwK, (T, w)A, (k, ), (296)
with R
e w
KP(T’ 0)) = %m (297)

and, in the Lehmann representation,

Ay, ) = gze—mm (1+e7P%) |(nlc,|m) |25 (Ey, — By — ). (298)

Here (ﬁ — uN)In) = Ep|n). Note that A, (k, @) = —Im G"™*'(k, w), with

G (k, w) = —i f dre(t)et ({¢, (1), ¢/ (0)}). (299)
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The above follows from the identity ©(t) = ﬁ f dw’%. Finally, the sum rule reads

f dwA, (k, w) = n{{e,, &1 }) = n ((¢.(t = 0)[(0)) + (¢, (v = B)E[(0))). (300)

Using the Max_Sac.F90 with Channel="P" will load the above kernel in the MaxEnt library.
In this case the back transformation is set to unity. Note that for each configuration of fields
we have ((¢, (7 = 0)6,:(0)))C + (¢ (7 = ﬂ)é;(o)))c = (({ék,é;}))c = 1, hence, if both the
7 =0 and 7 = 3 data points are included, the covariance matrix will have a zero eigenvalue
and the y2 measure is not defined. Therefore, for the particle channel the program omits the
T = f3 data point. There are special particle-hole symmetric cases where the T = 0 data point
shows no fluctuations — in such cases the code omits the T = 0 data point as well.

10.4 Single-particle quantities with particle-hole symmetry: Channel=P_PH

Assume that the single particle Green function has an additional symmetry, G(e, 7) = G(eo, f—1T)
where e is a placeholder for a momentum or real-space index. Then one can use the Channel=P_-
PH tag. In this case the analysis will average over G(e, 7) and G(e, 3—7) to provide an improved
estimator, and the output files of the analysis, g_dat, will contain data with 7 in the range
T C [0,B]. As a consequence of the particle hole symmetry the spectral function is an even
function of the frequency. For this channel we constrain the frequency range to w C [0, 00]

to obtain:
oo

(&, (v)el0) = J dw[K, (T, ®) +K,(7,—w) A, (e, w). (301)
0

~
= th(T;w)

The above defines the kernel for this channel. If this channel is specified in the data file, then
the lower bound of the frequency range will be set to zero by the program.

10.5 Particle-hole quantities: Channel=PH

Imaginary-time formulation

For particle-hole quantities such as spin-spin or charge-charge correlations, the kernel reads

n n 1 e_Tw
(5(q,7)5(—q,0)) = —J do——=7"(q, ). (302)
T 1—e B
This follows directly from the Lehmann representation
i _ 5 _
7@ o)= 2 e PRS@Im) 5+~ E) (1= ) (303)
n,m

with

2(q,0)= lf de@(t)e' ([8(g, ), 5(=q,0) ]).
Since the linear response to a hermitian perturbation is real, y”(q, w) = —y”(—q,—w) and

hence ($(g, 7)S(—q,0)) is a symmetric function around f = 7/2 for systems with inversion
symmetry — the ones we consider here. When Channel=PH the analysis program ana.out uses
this symmetry to provide an improved estimator.

The stochastic MaxEnt requires a sum rule, and hence the kernel and image have to be
adequately redefined. Let us consider coth(fw/2)y” (g, w). For this quantity, we have the
sum rule, since

J dw coth(Bw/2)y"(q, w) = 21(5(q, T = 0)8(—q,0)), (304)
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which is just the first point in the data. Therefore,

n n 1 —Tw
(S(q,7)8(—q,0)) = J dow EﬁW tanh(fw/2) coth(fw/2)x"(q, w) (305)
Kpp?;,w) Ap;(rw)

and one computes A(w). Note that since ¥” is an odd function of w one restricts the integration
range to positive values of w. Hence:

(o]

(8(q,7)5(—q,0)) = f dw (K, (T, 0) + Kpp (T, —) ) Apy(w). (306)
0

-~
Kph(7,0)

In the code, W, is set to zero by default and the kernel Ky, is defined in the routine XKER_ph.
In general, one would like to produce the dynamical structure factor that gives the suscep-
tibility according to

S(g, ) = x"(q, w)/ (1 —e7P). (307)
In the code, the routine BACK_TRANS_ph transforms the image A to the desired quantity:
App(w)
S(g, @) = ———. 308
(q.0)= 1" (308)

Matsubara-frequency formulation

The ALF library uses imaginary time. It is, however, possible to formulate the MaxEnt in
Matsubara frequencies. Consider:

2(q,12,) =J
0

Using the fact that y”(q, w) = —y"(—q,—w) = —x”(q,—w) one obtains

. 1
X(q;lﬂm):_J
T Jo

B

7
dre'™™(S(q,7)8(—q,0)) = = f dwm. (309)
T w—1Q,

oo

do( == 1))

w—i, —w—iQ,

el 2 7
T ), w2+02 W
o0
= f dwK(w, i£2,)A(g, w),
0
with 5 .
K(a),lﬂm)— W and A(q, Cz))— ;T (311)
The above definitions produce an image that satisfies the sum rule:
oo o
1 1/
f dwA(q, w) = —f do? @) _ 1(q,i9,, = 0). (312)
0 T ) oo w
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10.6 Optical conductivity: Channel=PH_C

A slight modification of the above is required to compute the optical conductivity. In the
Lehmann representation, this quantity reads:

o'(w)= %é Ze_ﬁEﬂl(n|fp|m)|25(w +E, —Em)(l —e_ﬁ“’) (313)

n,m

where jp is a model dependent paramagnetic current operator. One can show that the sum
rule,

f dww coth(fw/2)o’(w) = 21(J,(T = 0)J,(0)) (314)
holds such that:
(J(0)J(0)) = f dow %% tanh(fw/2) w coth(fw/2)o’(w) (315)
Kpp(7,0) Ac(w)

and one computes A-(w). Since jp is hermitian, o’(w) is an even function of frequency, the
above can be simplified to

oo

(0, (0) = J do (K,p (T, @) + K,y (T, —w)) Ac(w). (316)
0

Kph(Tsw)

As apparent, the only difference with the particle-hole channel of Sec. 10.5 is in the back
transformation routine BACK_TRANS_ph_C required to obtain the optical conductivity:

_ tanh(fw/2)
- w

o'(w) Ac(w) (317)

10.7 Particle-Particle quantities: Channel=PP

Similarly to the particle-hole channel, the particle-particle channel is also a bosonic correla-
tion function. Here, however, we do not assume that the imaginary time data is symmetric
around the T = 3/2 point. We use the kernel K, defined in Eq. (305) and consider the whole
frequency range. The back transformation yields

1/(w) _ tanh(Bo/2)
w B w

(w). (318)
If no default is provided, then we use a flat default for the A(w) that satisfies the sum rule:
fdcoA(co) =r ((§(q,/3)§(—q,0)) + (§(q,0)§(—q,0))). Here, we use the same notation as in
Eq. (305).

10.8 Zero-temperature, projective code: Channel=TO0

In the zero temperature limit, the spectral function associated to an operator O reads:

A(w) =7 (n|0]0)|*6(E, — Eg — w), (319)

such that
(0107(7)0(0)|0) = J dwKy(T, w)Ag(w), (320)
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with

1
Ko(T,w)=—e""%. (321)
T

The zeroth moment of the spectral function reads
f dwA,(w) = 1(0/0"(0)0(0)|0), (322)

and hence corresponds to the first data point.

In the zero-temperature limit one does not distinguish between particle, particle-hole, or
particle-particle channels. Using the Max_Sac.F90 with Channel="T0" loads the above kernel
in the MaxEnt library. In this case the back transformation is set to unity. The code will also
cut-off the tail of the imaginary time correlation function if the relative error is greater that
the variable Tolerance.

10.9 Integration over the spectral function

In many cases, one would like to compute the integral

(F,A):Jda)F(co)A(a)) (323)

for a user defined function F(w) and the spectral function A(w) produced in the stochastic
MaxEnt. An example of an application where this can come in handy is the calculation of
the quantum Fisher information (QFI) [158] or susceptibilities. As seen above, the stochastic
MaxEnt encodes the image n(x) as a set of Dirac 6-functions (Eq. (287)); thus rendering the
integration very convenient to carry out. Since we stochastically sample the image, we can
easily estimate the fluctuations of the result. In fact,

1
(FA) = MOJ dxF(® 1 (x))n(x). (324)
0
The function F(w) is provided by the user in the call to the stochastic MaxEnt routine. The
program then computes (F,A) at the given sets of temperatures a (see Eq. 286) provided by
the user.
One can use the above to efficiently compute susceptibilities— typically of the form:

B B
x = f drg(t)= f dcoJ dTtK(7,w) A(w). (325)
0 0

=F(w)

Here, the analytic continuation is used as an optimal fit function to the imaginary time data,
allowing the minimization of finite discretization time errors.

Another example is the quantum Fisher information [158]. In the particle-hole channel,
this quantity reads:

Fo(T) = J dw tanh (ﬂ—‘”) ¥ ()= f dew 2 tanh? (ﬁ—”) Alw). (326)
0 T 2 0 T 2
=F(w)

The last step follows for Eq. 305. Results are written in the file (F,A) .dat. The file has three
rows corresponding to inverse temperature a, (F,A) and A(F,A). The function F is specified
in the MaxEnt wrapper Max_SAC.F90 in the Analysis directory.
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Figure 14: Dynamics of the one-dimensional half-filled Hubbard model on a 46-site
chain, with U/t=4 and 8t = 10. The top (bottom) panels correspond to stochastic
(Classic) Maxent runs. (a,d) Dynamical charge structure factor, (b,e) single particle
spectral function and (c,f) dynamical spin structure factor. Data obtained using the
PYALF python script Hubbard_1D.py, considering 400 bins of 200 sweeps each and
taking into account the covariance matrix for the MaxEnt. The parameters for the
MaxEnt that differ from the default values are also listed in the python script.

10.10 Dynamics of the one-dimensional half-filled Hubbard model

To conclude this section, we show the example of the one-dimensional Hubbard model, which
is known to show spin-charge separation (see Ref. [159] and references therein). The data of
Fig. 14 was produced with the pyALF python script Hubbard_1D.py, and the spectral function
plots with the bash script Spectral.sh.

11 Conclusions and Future Directions

In its present form, the auxiliary-field QMC code of the ALF project allows us to simulate
a large class of non-trivial models, both efficiently and at minimal programming cost. The
package contains many advanced functionalities, including a projective formulation, various
updating schemes, better control of Trotter errors, predefined structures that facilitate reuse,
a large class of models, continuous fields and, finally, stochastic and Maximum Entropy codes
for analytical continuation. Also, the usability of the code has been continuously improved.
In particular the pyALF project provides a Python interface to the ALF which substantially
facilitates running the code for established models. This ease of use renders ALF a powerful
tool to for benchmarking new algorithms.

There are further capabilities that we would like to see in future versions of ALE It would
be desirable to include additional lattice fermion algorithms such as the CT-INT [89,160]. In
this process we also aim at improving the modularity of the code, such that common parts
for different algorithms can be reused. There are many methods aimed a circumventing the
negative sign problem. This includes variational implementations of the projective code. It
would certainly be desirable to implement such schemes in the ALE One further imminent
challenge is to make the code GPU ready since most computer centers are shifting towards
GPU-based supercomputers. At first glance it is not obvious how to achieve this efficiently
since the size of our matrices is small.
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A Practical implementation of Wick decomposition of 2n-point cor-
relation functions of two imaginary times

In this Appendix we briefly outline how to compute 2n point correlation functions of the form:

. / / / /
ll_)r% E f(Gl,Ul,"’ >O-n>o-n55155]_'”sn:5n)

/ / /
01,0750 10,0 7,5155] " *Sn>S),

((T(éL,UN(Tle)C ! o ’(Tle) al).'.(éinﬁn,sn(T”f)éx,’l,a;,s;n(T:I,e)_a”)»C' (327)

X1,01,81

Here, o is a color index and s a flavor index such that

(T (1) o0 (T Mo = ((TEL (1), (TN BoeBor (328)

That is, the single-particle Green function is diagonal in the flavor index and color independent.
To define the time ordering we will assume that all times differ but that lim._,; 7, . as well as
lim,_,q 7], take the values O or 7. Let

G(1,9) = im({Tc], (e1)e,, (%) M. (329)

The G,(I,J) are uniquely defined by the time-displaced correlation functions that enter the
ObserT routine in the Hamiltonian files. They are defined in Eq. (159) and read:

ToGry,e) = (¢ xs(f) e = (TE, (D O
COTCx,y,8) = (¢ ;s )>>c = (T2, (0] ()
’ ’ (330)
GoO(x,y,s) = ((¢( Ar (0)>>c
GTT(x,y,s) = ({¢, (T)cys(f))>c-
For instance, let 7; . > T}’e and lim._,q 77 = lim._,q T’J’e = 7. Then
GS(IJJ) = (( (T)C / (T»)C - 5)(‘ X GTT(XJ’XIJS) (331)
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Using the formulation of Wick’s theorem of Eq. (24), Eq. (327) reads:

Z fo1,0,+,0,,00,51,8]**Sp,80) (332)
0'1,0'/1,"',O'H,O'/n,Sl,S;"'Sn,S/n
Gsl(l: 1)551’51 501’0/1—(11 Gsl(1:2)5sl,s;601,0’2 Gsl(l’n)551’5;50150-;1
d G32(2, 1)532,31 502,01 GSz (2, 2)552,53502,0/2—(12 e G52(2, n)552,s; 502,0;
et
G, (n,1)65 565, 0 G;,(n,2)85 65, o4 o Gy ()& 65 51—y

The symbolic evaluation of the determinant as well as the sum over the color and flavor indices
can be carried out with Mathematica. This produces a long expression in terms of the functions
G(1,J,s) that can then be included in the code. The Mathematica notebooks that we use can
be found in the directory Mathematica of the ALF directory. As an open source alternative to
Mathematica, the user can consider the Sympy Python library.

B Performance, memory requirements and parallelization

As mentioned in the introduction, the auxiliary field QMC algorithm scales linearly in inverse
temperature 3 and as a cube in the volume Ny;,,. Using fast updates, a single spin flip requires
(Nym)? operations to update the Green function upon acceptance. As there are Lyyoer X Ngim
spins to be visited, the total computational cost for one sweep is of the order of 3(Ng;,)3. This
operation alongside QR-decompositions required for stabilization dominates the performance,
see Fig. 15. A profiling analysis of our code shows that 80-90% of the CPU time is spend in
ZGEMM calls of the BLAS library provided in the MKL package by Intel. Consequently, the
single-core performance is next to optimal.

10000 T T T
QMC simulation 4
fit ~ 23 ——

1000

100

Wall-clock time

10 Il Il Il Il Il
256 400 576 784 1024 1296

Ndim

Figure 15: Volume scaling behavior of the auxiliary field QMC code of the ALF project
on SuperMUC (phase 2/Haswell nodes) at the LRZ in Munich. The number of sites
Nyi corresponds to the system volume. The plot confirms that the leading scaling
order is due to matrix multiplications such that the runtime is dominated by calls to

ZGEMM.

For the implementation which scales linearly in 3, one has to store 2 X N; X Liygger/NWrap
intermediate propagation matrices of dimension Ny;, % Ngi,- Hence the memory cost scales
as BN (im and for large lattices and/or low temperatures this dominates the total memory
requirements that can exceed 2 GB memory for a sequential version.
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The above estimates of SN g’im for CPU time and SN cfim for memory implicitly assume Hamil-
tonians where the interaction is a sum of local terms. Recently Landau level projection schemes
for the regularization of continuum field theories have been introduced in the realm of the
auxiliary field QMC algorithm [70, 71]. In this case the interaction is not local, such that the
matrices stored in the Op_V array of Observable type are of dimension of Ny;,,. Since the
dimension of the Op_V array scales as Ny;,,, the memory requirement scales as N j’im. In these
algorithms, a single field couples to a Ny, X Ng;, matrix, such that updating it scales as N jim.
Furthermore, and as mentioned in Sec. 2.3, for non-local Hamiltonians the Trotter time step
has to be scaled as 1/Ny;,, so as to maintain a constant systematic error. Taking all of this
into account, yields a CPU time that scales as SN dsim. Hence this approach is expensive both
in memory and CPU time.

At the heart of Monte Carlo schemes lies a random walk through the given configuration
space. This is easily parallelized via MPI by associating one random walker to each MPI task.
For each task, we start from a random configuration and have to invest the autocorrelation
time T,,,, to produce an equilibrated configuration. Additionally we can also profit from an
OpenMP parallelized version of the BLAS/LAPACK library for an additional speedup, which
also effects equilibration overhead Nyp; X Tauio/Nomp, Where Nyp; is the number of cores and
Nomp the number of OpenMP threads. For a given number of independent measurements
Npeas, We therefore need a wall-clock time given by

T:ﬁ(nlﬁ). (333)
NOMP NMPI

As we typically have Ny ..s/Nypr > 1, the speedup is expected to be almost perfect, in accor-
dance with the performance test results for the auxiliary field QMC code on SuperMUC (see
Fig. 16 (left)).

For many problem sizes, 2 GB memory per MPI task (random walker) suffices such that we
typically start as many MPI tasks as there are physical cores per node. Due to the large amount
of CPU time spent in MKL routines, we do not profit from the hyper-threading option. For large
systems, the memory requirement increases and this is tackled by increasing the amount of
OpenMP threads to decrease the stress on the memory system and to simultaneously reduce
the equilibration overhead (see Fig. 16 (right)). For the displayed speedup, it was crucial
to pin the MPI tasks as well as the OpenMP threads in a pattern which keeps the threads as
compact as possible to profit from a shared cache. This also explains the drop in efficiency
from 14 to 28 threads where the OpenMP threads are spread over both sockets.

We store the field configurations of the random walker as checkpoints, such that a long
simulation can be easily split into several short simulations. This procedure allows us to take
advantage of chained jobs using the dependency chains provided by the batch system.
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Figure 16: MPI (left) and OpenMP (right) scaling behavior of the auxiliary field
QMC code of the ALF project on SuperMUC (phase 2/Haswell nodes) at the LRZ in
Munich. The MPI performance data was normalized to 28 cores and was obtained
using a problem size of Ny, = 400. This is a medium to small system size that
is the least favorable in terms of MPI synchronization effects. The OpenMP perfor-
mance data was obtained using a problem size of Ng;,, = 1296. Employing 2 and 4
OpenMP threads introduces some synchronization/management overhead such that
the per-core performance is slightly reduced, compared to the single thread efficiency.
Further increasing the amount of threads to 7 and 14 keeps the efficiency constant.
The drop in performance of the 28 thread configuration is due to the architecture
as the threads are now spread over both sockets of the node. To obtain the above
results, it was crucial to pin the processes in a fashion that keeps the OpenMP threads
as compact as possible.

C Licenses and Copyrights

The ALF code is provided as an open source software such that it is available to all and we
hope that it will be useful. If you benefit from this code we ask that you acknowledge the
ALF collaboration as mentioned on our website https://alf.physik.uni-wuerzburg.de. The git
repository at https://github.com/ALF-QMC/ALF gives us the tools to create a small but vi-
brant community around the code and provides a suitable entry point for future contributors
and future developments. The website is also the place where the original source files can
be found. Its public release make it necessary to add copyright headers to our source code,
which is licensed under a GPL license to keep the source as well as any future work in the
community. And the Creative Commons licenses are a good way to share our documenta-
tion and it is also well accepted by publishers. Therefore this document is licensed to you
under a CC-BY-SA license. This means you can share it and redistribute it as long as you
cite the original source and license your changes under the same license. The details are in
the file 1icense.CCBYSA, which you should have received with this documentation. To ex-
press our desire for a proper attribution we decided to make this a visible part of the license.
To that end we have exercised the rights of section 7 of GPL version 3 and have amended
the license terms with an additional paragraph that expresses our wish that if an author has
benefited from this code that he/she should consider giving back a citation as specified on
https://alf.physik.uni-wuerzburg.de. This is not something that is meant to restrict your free-
dom of use, but something that we strongly expect to be good scientific conduct. The original
GPL license can be found in the file 1icense.GPL and the additional terms can be found in
license.additional. In favour to our users, the ALF code contains part of the Lapack im-
plementation version 3.6.1 from http://www.netlib.org/lapack. Lapack is licensed under the
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modified BSD license whose full text can be found in 1icense.BSD.

With that being said, we hope that the ALF code will prove to you to be a suitable and high-
performance tool that enables you to perform quantum Monte Carlo studies of solid state
models of unprecedented complexity.

The ALF project’s contributors.

COPYRIGHT

Copyright © 2016-2022, The ALF Project.

The ALF Project Documentation is licensed under a Creative Commons Attribution-ShareAlike
4.0 International License. You are free to share and benefit from this documentation as long
as this license is preserved and proper attribution to the authors is given. For details see the
ALF project website alf.physik.uni-wuerzburg.de and the file 1icense.CCBYSA.
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