pyALF Documentation
Jonas Schwab

Institut fiir Theoretische Physik und Astrophysik, Universitit Wiirzburg, 97074 Wiirzburg,
Germany
Wiirzburg-Dresden Cluster of Excellence ct.qmat, Universitit Wiirzburg, 97074 Wiirzburg,
Germany
jonas.schwab@uni-wuerzburg.de

February 14, 2026

Abstract

The auxiliary-field quantum Monte Carlo package ALF [1, 2] is a powerful tool for simulating a broad set of fermionic
systems, but since it is written in Fortran, it is not very dynamic and can be a bit daunting for new users.

Aiming to address this challenge, pyALF is a set of Python scripts built on top of ALF. It is meant to simplify the
different steps of working with ALF, including:

« Obtaining and compiling the ALF source code

« Preparing and running simulations

 Postprocessing and displaying the data obtained during the simulation
The source codes for both ALF and pyALF are publicly available at https://github.com/ALF-QMC.
This documentation is structured in the following way:

1. Section 1 describes the prerequisites of pyALF and how to set things up to be able to use it in a productive
manner.

2. Section 2 displays the features of pyALF and how to use them on small examples.

3. For a reference on pyALF’s features, see Section 3.

mailto:jonas.schwab@uni-wuerzburg.de
https://github.com/ALF-QMC

CONTENTS

Abstract i

Contents iv
1 Prerequisites and installation

1.1 ALF Prerequisites o v v v v v e et e e e e e e e e e e e e e e e 1

1.2 pyALFinstallation 0 . e e e e e e e e e e e 2

1.2.1 Developmentinstallation L e 2

1.3 Setting ALF directory through environment variable 2

1.4 Checksetup e 3

1.5 Using Jupyter Notebooks e 3

1.6 Ready-to-use CONtAINer IMAZE . . « . v v v v v v v e 3

1.7 Some SSH port forwarding applications e e 4

1.7.1 Use remote forwarding to circumvent restrictive firewalls 4

1.7.2 Using Jupyter viaSSH tunnel L o 5

1.7.3 Using SSHin Visual StudioCode 5

2 Usage 7

2.1 Minimal example e e e e e e e e e 7

2.2 Compilingand running ALF L. 12

2.2.1 ClasS ALF_SOUTLCE « v v v v v v e et et e e e e e e e e e e e e e 13

222 Class Simulation ittt e 13

2.2.3 Specifying parameters e e e e e e e e e e e 16

224 Seriesof MPIruns L e e 17

2.2.5 Parallel Tempering oo e e e 20

2.2.6 Only preparin@ runs v v v v it e e e e e e e e e e e e e e e e e e 22

2.3 POSIPIOCESSING . . v v v v v o e 25

2.3.1 Basicanalysis e e e e e e e e e e e 25

23.1.1 Getanalysisresults L 26

2.3.1.1.1 Scalarobservables 27

23.1.1.1.1 Example 28

2.3.1.1.2 Equal-time correlation functions 28

2.3.1.1.3 Time-displaced correlation functions 30

2.3.2 Custom/Derived Observables 32

2.3.3 Checking warmup and autocorrelation times 37

2.3.3.1 Preparations i . e e e e e e 37

2332 Checkwarmup v v vt e e e e e e e e e e e e 39

2333 Checkrebin 40

2.34 Symmetrization of correlations on the lattice 0 0., 42

24 Command line tools e e e e e e e 45

2.4.1 alf run ... e e 46

2.4.2 alf_pOStPIOCESS © .« v v v v e 46

3 Reference 49

pYALF Documentation

3.1 Class ALF SOUICE v v v o i i e et e e e e e e e e e e e e e 49

32 Class SImulation o o e e e e e e e e 50

3.3 High-level analysis functions e e e e 52

34 ClassLattice o o e e e e e e e e 54

3.5 Low-level analysis functions 56

3.6 Utility functions o e e e e e e e 60

3.7 Command line tools e e e e e 61
37.1 minimal ALF run e 61

372 alf run ... e e 61

37721 Named Arguments L e 61

373 alf_poStPrOCESS . . v v v i e e e e e e e e e e e e e e e e 62

3.7.3.1 Positional ArgUMENtS e e e e e e e e e 62

3.7.3.2 Named ArUMEnts o v v v e e e e e e e e e e e e e e e 62

374 alf bin_count e 63

3.74.1 Positional Argumentso 63

3.7.5 alf show 0bs s 63

3.7.5.1 Positional Arguments oo L e e e e e 63

37.6 alf del bins e 63

3.7.6.1 Positional Argumentso L. 63

3.7.6.2 Named Argumentst 63

377 alf_test_branch e e e e 64

3.7.7.1 Named Arguments v v v bt e e e e e e e e e e e 64

4 Acknowledgments 65
Bibliography 67
Index 69
iv CONTENTS

CHAPTER
ONE

PREREQUISITES AND INSTALLATION

This section lists the prerequisites of pyALF and how to set things up to be able to use it in a productive manner.

1.1 ALF prerequisites

Since pyALF builds on ALF, we also want to satisfy its requirements. Note, however, that pyALF’s postprocessing
features are independent from ALF. This might be relevant, for example, when performing QMC runs and analysis
on different machines.

The minimal ALF prerequisites are:
 The Unix shell Bash
» Make
« A recent Fortran Compiler (e. g. Submodules must be supported)
« BLAS+LAPACK
o Python 3
For parallelization, an MPI development library, e. g. Open MPI, is necessary.

Results from ALF can either be saved in a plain text format or HDF5, but full pyALF support is only provided for
the latter, which is why in pyALF, HDFS5 is enabled by default. ALF automatically downloads and compiles HDFS5.
For this to succeed, the following is needed:

o A C compiler (which is most often automatically included when installing a Fortran Compiler)
o A C++ preprocessor
o Curl or Wget
« gzip development libraries
The recommended way for obtaining the source code is through git.
Finally, the ALF testsuite needs:
o CMake

As an example, the requirements mentioned above can be satisfied on a Debian, Ubuntu, or similar operating system
using the APT package manager, by executing the command:

sudo apt install make gfortran libblas-dev liblapack-dev \
python3 libopenmpi-dev g++ curl libghc-zlib-dev \
git ca-certificates cmake bash

The above installs compilers from the GNU compiler collection. Other supported and tested compiler frameworks
are from the Intel® one API Toolkits and the NVIDIA HPC SDK. The latter is denoted as PGI in ALF.

https://gcc.gnu.org/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://developer.nvidia.com/nvidia-hpc-sdk-downloads

pYALF Documentation

1.2 pyALF installation

A Warning

In previous versions of pyALF, the installation instructions asked the users to set the environment variable
PYTHONPATH. This conflicts with the newer pip package, therefore you should remove definitions of the
PYTHONPATH environment variable related to pyALF.

pYALF can be installed via the Python package installer pip.

[pip install pyALF]

It automatically installs all requirements, but in case you want to install them in a different way, e.g. through apt or
conda, these are the Python packages pyALF depends on:

o f90nml

» h5py

o ipympl

« ipywidgets
« matplotlib
» numba

e numpy

« pandas

e scipy

o tkinter

1.2.1 Development installation

If you want to develop pyALF, you can clone the repository and install it in development mode, which allows you to
edit the files while using them like an installed package. For this, it is highly recommended to use a dedicated Python
environment using e.g. Python venv or a conda environment. The following example shows how to install pyALF in
development mode using venv.

git clone https://https://github.com/ALF-QMC/pyALF.qgit
cd pyALF

python -m venv .venv

source .venv/bin/activate

pip install --editable .

1.3 Setting ALF directory through environment variable

Since pyALF is set up to automatically clone ALF with git, it is not strictly necessary to download ALF manually, but
pYALF will download ALF every time it does not find it. Therefore it is recommended to clone ALF once manually
from here and setting its location in the environment variable ALF_DIR. This way, pyALF will use the same ALF
source code directory every time.

ALF can be cloned with the Unix shell command

2 Chapter 1. Prerequisites and installation

https://pip.pypa.io/en/stable/
https://setuptools.pypa.io/en/latest/userguide/development_mode.html
https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://github.com/ALF-QMC/ALF

pYALF Documentation

[git clone https://github.com/ALF-QMC/ALF.git }

This will create a folder called ALF in the current working directory of the terminal and download the repository
there'.

The environment variable can then be set with the command

[export ALF_DIR="/path/to/ALEF" }

where /path/to/ALF is the location of the ALF code, for example /home/jonas/Programs/ALF. To not
have to repeat this command in every terminal session, it is advisable to add it to a file sourced when starting the
shell, e.g. ~/ .bashrcor~/.zshrc.

1.4 Check setup

To check if most things have been set up correctly, the script minimal ALF_run can be used. It executes the
same commands as the Minimal example. One should therefore be able to run it by executing

[minimal_ALF_run }

in the Unix shell. If it does clone the ALF repository, ALF_DIR has not been set up correctly. Note that on the first
compilation, ALF downloads and compiles HDF5, which can take up to ~15 minutes.

1.5 Using Jupyter Notebooks

A convenient way to work with pyALF (and Python in general) is through Jupyter Notebooks. These are interactively
usable documents that combine source code, results and narration (through Markdown) in one file. pyALF includes
example notebooks, online available from here, or by cloning the pyALF repository.

The canonical way to use the Jupyter Notebooks, is through a JupyterLab, which can for example be installed via pip
(for more details see here):

[pip install jupyterlab }

A JupyterLab can then be started with the shell command jupyter—1ab, which launches a web server that should
be automatically opened in your default browser.

Another convenient way to work with the notebooks is with Visual Studio Code, a versatile and extendable source-
code editor.

1.6 Ready-to-use container image

For a ready-to-use environment, one can use the Docker image alfcollaboration/jupyter-pyalf-full, which has the
above mentioned dependencies, ALF and pyALF installed. With a suitable container runtime e.g. Docker or Podman,
itcan be used to run ALF and pyALF without any further setup. Itis derived from the Jupyter Docker Stacks, therefore
this documentation applies. For example, one could run a container like this:

docker run —-it —--rm -p 127.0.0.1:8888:8888 —v "SPWD":/home/jovyan/work \
docker.io/alfcollaboration/jupyter-pyalf-full

It is a lesser known fact that git is completely decentralized and the concept of a central repository is rather only a convention. Every git
repository is an autonomous repository of itself. If, for example, pyALF has been cloned to /path/to/ALF, one could clone this repository
with git clone /path/to/ALF.

1.4. Check setup 3

https://www.markdownguide.org/
https://github.com/ALF-QMC/pyALF/tree/master/Notebooks
https://github.com/ALF-QMC/pyALF
https://jupyter.org/install
https://code.visualstudio.com/
https://hub.docker.com/r/alfcollaboration/jupyter-pyalf-full
https://www.docker.com/
https://podman.io/
https://jupyter-docker-stacks.readthedocs.io

pYALF Documentation

o The -p flag is used to expose port 8888 and you can access a JupyterLab running within the container by
navigatingto http://localhost:8888/lab?token=<token> with you browser, where <t oken>
has to be replaced by the token echoed to the terminal on startup.

« The -v flag mounts the current working directory to /home/jovyan/work within the container, allowing
to work on the same data in- and outside of the container.

o The -rm flag instructs Docker to automatically remove the container after it exits, avoiding cluttering up the
system with unused containers.

» The -i and -t flags keep the container’s STDIN open and attach a pseudo-terminal, allowing interactive input
on the terminal.

It is also possible to use the container without launching the included JupyterLab. The following command launches
a container, which executes minimal_ ALF_run, saving the results in the current working directory and removing
the container right after that.

docker run -it --rm -v "S$SPWD":/home/jovyan/work \
docker.io/alfcollaboration/jupyter-pyalf—-full \
bash -c¢ 'cd /home/jovyan/work && minimal ALF_run'

1.7 Some SSH port forwarding applications

ALF simulations are often performed on remote clusters that are accessed via SSH. Notably, SSH can be used for
much more than running a remote shell. In this section, I will show how one can use SSH port forwarding to download
data to HPC clusters with restrictive firewalls and how to access a JupyterLab launched on an HPC cluster.

1.7.1 Use remote forwarding to circumvent restrictive firewalls

If one wanted to git clone the ALF source code, this could usually be done with one of the following commands,
using HTTPS or SSH, respectively.

git clone https://github.com/ALF-QMC/ALF.git
git clone git@github.com:ALF-QMC/ALF.git

J

But on some systems with very restrictive firewalls, this approach might not work. This is where the ssh option -R
might come in handy. It maps a port on the remote machine to a an address connected to from the local machine on
which the SSH command was executed. To facilitate a connection to github . com, the following commands can
be used, connecting to port 443 or 22, for the HTTPS or SSH protocol, respectively.

ssh —-R <PortNum>:github.com:443 <username>@<servername>
ssh —R <PortNum>:github.com:22 <username>@<servername>

|

Here <PortNum> refers to a port on the remote machine, a value in the range from 49152 to 65535 would be best
here [3]. And <username>@<servername> is the usual SSH address. Alternatively to the command line option
-R, the SSH config file option RemoteForward can be used.

With these port forwarding options, the ALF source code can then be cloned on the remote machine with:

git clone -c http.sslVerify=false https://localhost:<PortNum>/ALF-QMC/ALF.git
git clone ssh://git@localhost:<PortNum>/ALF-QMC/ALF.git

The HTTPS version needs the option —c http.sslVerify=false because the SSL certificate for github.
com does not apply to localhost.

One can omit the host value in the —R option (in the example above github . com: 44 3) which will set up a dynamic
SOCKS proxy, able to connect to arbitrary addresses. This can be used, for example, to download and install packages
with pip.

4 Chapter 1. Prerequisites and installation

https://docs.docker.com/reference/cli/docker/container/run/#publish
https://docs.docker.com/reference/cli/docker/container/run/#volume
https://docs.docker.com/reference/cli/docker/container/run/#rm
https://docs.docker.com/reference/cli/docker/container/run/#interactive
https://docs.docker.com/reference/cli/docker/container/run/#tty
https://man.openbsd.org/ssh#R
https://man.openbsd.org/ssh_config#RemoteForward

pYALF Documentation

A\ Warning

Ports on the remote machine opened with —R / RemoteForward can not only be used by you, but possibly
also by other users of the machine. Therefore one should be careful when using the options, in particular without
specifying a host.

Using —R without a host to install pyALF with pip:

[ssh —R <PortNum> <username>@<servername> }

That pip can use the SOCKS proxy, the python package pysocks is necessary. If the package is not yet avail-
able, it is enough to get the file socks.py from here and have Python find it, e.g. with the environment variable
PYTHONPATH.

Then pyALF can be installed with:

[pip install --proxy socks4://localhost:<PortNum> pyALF]

1.7.2 Using Jupyter via SSH tunnel

When launching JupyterLab, it sets up a webserver and prints out how to access it locally, like:

[http://localhost:<remote_port_number>/lab?token:<token> }

Where <remote_port_number> is some port number (default 8888) and <t oken> is the password to access
the server.

Now, to access this web server on the remote machine, one can forward this port to the local machine using the SSH
option -L and open it with the browser.

[ssh —-L <local_port_number>:localhost:<remote_port_number> <username>@<servername>]

With the command from above, a remote JupyterLab will be accessible through the address http://
localhost:<local_port_number>:/lab?token=<token>.

1.7.3 Using SSH in Visual Studio Code

Here, a reference to use ssh in Visual Studio Code is provided: https://code.visualstudio.com/docs/remote/ssh

1.7. Some SSH port forwarding applications 5

https://github.com/Anorov/PySocks/blob/master/socks.py
https://man.openbsd.org/ssh#L
https://code.visualstudio.com/docs/remote/ssh

pYALF Documentation

6 Chapter 1. Prerequisites and installation

CHAPTER
TWO

USAGE

This section demonstrates how to use pyALF through small examples that can be directly executed, if everything has
been set up as described in Section 1. It first shows on a minimal example how to run an ALF simulation and get
some results. Then the different features of pyALF are expanded in more detail.

o Minimal example
o Compiling and running ALF

 Postprocessing

Basic analysis

Custom/Derived Observables

Checking warmup and autocorrelation times

Symmetrization of correlations on the lattice
o Command line tools

For a reference on all features, see Section 3.

© Tip

The Python builtin he 1p () is very useful for getting information on an object. Trye.g. help (Simulation)
after importing Simulation from py_alf.

2.1 Minimal example

In this bare-bones example we simulate the Hubbard model with default the default presets: a 6 x 6 square grid, with
interaction strength U = 4 and inverse temperature 3 = 5.

Bellow we go through the steps for performing the simulation and outputting observables.

1. Import ALF_source and Simulation classes from the py_alf python module, which provide the interface
with ALF:

from py_alf import ALF_source, Simulation # Interface with ALF

2. Create an instance of ALF__source, downloading the ALF source code from the ALF repository, if alf_dir
does not exist. Gets alf_dir from environment variable SALF_DIR, or defaults to " . /ALF", if not present:

alf_src = ALF_source ()

3. Create an instance of Simulation, overwriting default parameters as desired:

https://docs.python.org/3/library/functions.html#help
https://github.com/ALF-QMC/ALF

pYALF Documentation

sim = Simulation (
alf_src,
"Hubbard", # Name of Hamiltonian
{ # Dictionary overwriting default parameters
"Lattice_type": "Square"

}l

machine='GNU' # Change to "intel", or "PGI" if gfortran is not installed

4. Compile ALF. The first time it will also download and compile HDF5, which could take ~15 minutes.

sim.compile ()

Compiling ALF...
Cleaning up Prog/
Cleaning up Libraries/
Cleaning up Analysis/
Compiling Libraries

Compiling Analysis

Compiling Program

Parsing Hamiltonian parameters

filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian_
~Kondo_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ Hubbard_smod.F90 Hamiltonians/Hamiltonian_
~Hubbard_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Hubbard_Plain_Vanilla_smod.F90 Hamiltonians/
~Hamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_
wread_write_parameters.F90

filenames: Hamiltonians/Hamiltonian LRC_smod.F90 Hamiltonians/Hamiltonian_ LRC_
wread_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Z2_Matter_smod.F90 Hamiltonians/Hamiltonian_
~Z2_Matter_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Spin_Peierls_smod.F90 Hamiltonians/
sHamiltonian_Spin_Peierls_read_write_parameters.F90

Compiling program modules

Link program

Done.

Compiling Analysis

Compiling Program

Parsing Hamiltonian parameters

filenames: Hamiltonians/Hamiltonian Kondo_smod.F90 Hamiltonians/Hamiltonian_
~Kondo_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Hubbard_smod.F90 Hamiltonians/Hamiltonian_
~Hubbard_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Hubbard_Plain_Vanilla_ smod.F90 Hamiltonians/
wHamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ tV_smod.F90 Hamiltonians/Hamiltonian_ tV__
wread_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_LRC_smod.F90 Hamiltonians/Hamiltonian_LRC_
~read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Z2_Matter_smod.F90 Hamiltonians/Hamiltonian_
~Z2_Matter_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Spin_Peierls_smod.F90 Hamiltonians/
~Hamiltonian_Spin_Peierls_read_write_parameters.F90

Compiling program modules

8 Chapter 2. Usage

pYALF Documentation

Link program

Done.

5. Perform the simulation as specified in sim:

sim.run ()

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_
-Square" for Monte Carlo run.
Create new directory.
Run /home/jonas/Programs/ALF/Prog/ALF.out
ALF Copyright (C) 2016 - 2022 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain.
~conditions.
No initial configuration

6. Perform some simple analysis:

sim.analysis ()

Analyzing /home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_
wSquare ###
/home/jonas/Programs/pyALF/doc/source/usage

Scalar observables:

Ener_scal

Kin_scal

Part_scal

Pot_scal

Histogram observables:

Equal time observables:

Den_eqg

Green_eq

SpinT_eq

SpinXY_eq

SpinZ_eq

Time displaced observables:

Den_tau

Green_tau

SpinT_tau

SpinXY_tau

SpinZ_tau

7. Read analysis results into a Pandas Dataframe with one row per simulation, containing parameters and observables:

obs = sim.get_obs ()

/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_Square
No orbital locations saved.

obs

continuous ham_chem \
/home/jonas/Programs/pyALF/doc/source/usage/ALF. .. 0 0.0

ham_t ham_t2 ham_tperp \
/home/jonas/Programs/pyALF/doc/source/usage/ALF. .. 1.0 1.0 1.0

(continues on next page)

2.1. Minimal example 9

pYALF Documentation

(continued from previous page)

ham_u ham_u2 mz 11 12 \

/home/jonas/Programs/pyALF/doc/source/usage/ALF. .. 4.0 4.0 1 6 6
\

/home/jonas/Programs/pyALF/doc/source/usage/ALF. ..
o SpinXY_tauK_err \
/home/jonas/Programs/pyALF/doc/source/usage/ALF... [[0.2262872250454745, 0.
+3768545985400847, 0.01...
o SpinXY_tauR \
/home/jonas/Programs/pyALF/doc/source/usage/ALF... [[0.05759880037574172, -0.
+10378742200159607, O...
o SpinXY_tauR_err \
/home/jonas/Programs/pyALF/doc/source/usage/ALF... [[0.012488346667982868, 0.

~03687128937818297, O...

o SpinXY_tau_lattice \
/home/jonas/Programs/pyALF/doc/source/usage/ALF... {'Ll1':
<0, 6.01, 'al': [1....

o SpinZ_tauK \

[6.0, 0.0]1, 'L2': [O.

/home/jonas/Programs/pyALF/doc/source/usage/ALF... [[0.904003636203397, O.

-562819189602052, 0.6101...

SpinZ_tauK_err \

/home/jonas/Programs/pyALF/doc/source/usage/ALF... [[0.14947867503119427, 0.

~06006336638594533, 0....

2 SpinZ_tauR \

/home/jonas/Programs/pyALF/doc/source/usage/ALF... [[0.10134420531394392, -0.

-1144555239159215, O....

o SpinZ_tauR_err \

/home/jonas/Programs/pyALF/doc/source/usage/ALF... [[0.06273438448506144, 0.

-05639078043063978, 0....

SpinZ_tau_lattice \
/home/jonas/Programs/pyALF/doc/source/usage/ALF... {'L1':
<0, 6.01, 'al': [1....

o lattice
/home/jonas/Programs/pyALF/doc/source/usage/ALF... {'L1':
<0, 6.0], 'N_coord'...

[1 rows x 111 columns]

o The internal energy of the system (and its error) are accessed by:

[6.0, 0.0], 'Lz2': [O.

[6.0, 0.0], 'L2': [O.

obs.iloc[O][['Ener_scalO', 'Ener_scalO_err', 'Ener_scal_sign', 'Ener_scal_sign_err
(continues on next page)
10 Chapter 2. Usage

pYALF Documentation

(continued from previous page)

1]

Ener_scal0 -29.821914
Ener_scalO_err 0.13032
Ener_scal_sign 1.0
Ener_scal_sign_err 0.0

Name: /home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_Square, .
~dtype: object

A Warning

While it is very easy to get some results, as demonstrated right now, there are many caveats with using QMC, and
a naive approach will quickly lead to wrong results.

Three of those caveats, namely numerical stability, warmup and autocorrelation will later be briefly addressed.
For more details, please refer to the ALF documentation.

o The simulation can be resumed by calling sim. run () again, increasing the precision of results:

sim.run ()

sim.analysis ()

obs2 = sim.get_obs ()

obs2.iloc[0] [['Ener_scalO', 'Ener_scalO_err', 'Ener_scal_sign', 'Ener_scal_sign_
serr']]

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_
<»Square" for Monte Carlo run.

Resuming previous run.

Run /home/jonas/Programs/ALF/Prog/ALF.out

ALF Copyright (C) 2016 - 2022 The ALF project contributors

This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain.
~conditions.

Analyzing /home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_
~Square ###

/home/jonas/Programs/pyALF/doc/source/usage

Scalar observables:

Ener_scal

Kin_scal

Part_scal

Pot_scal

Histogram observables:

Equal time observables:

Den_eqg

Green_eq

SpinT_eq

SpinXY_eq

SpinZ_eq

Time displaced observables:

Den_tau

Green_tau

SpinT_tau

SpinXY_tau

SpinZ_tau
/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_Square

No orbital locations saved.

Ener_scal0 -29.609245
(continues on next page)

2.1. Minimal example 11

https://alf.physik.uni-wuerzburg.de/doc.pdf

pYALF Documentation

(continued from previous page)

Ener_scalO_err 0.136803
Ener_scal_sign 1.0
Ener_scal_sign_err 0.0

Name: /home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_ Square, .
~dtype: object

Analyzing /home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_
wSquare ###
/home/jonas/Programs/pyALF/doc/source/usage

Scalar observables:

Ener_scal

Kin_scal

Part_scal

Pot_scal

Histogram observables:

Equal time observables:

Den_eq

Green_eq

SpinT_eq

SpinXY_eq

SpinZ_eq

Time displaced observables:

Den_tau

Green_tau

SpinT_tau

SpinXY_tau

SpinZ_tau
/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_Square

No orbital locations saved.

Ener_scalO -29.609245
Ener_scalO_err 0.136803
Ener_scal_sign 1.0
Ener_scal_sign_err 0.0

Name: /home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_Square, .
~dtype: object

print (f"""Running again changed the error
from {obs.iloc[0]['Ener_scalO_err']
to {obs2.1iloc[0]['"Ener scallO err'] "mm)

Running again changed the error
from 0.13032001866398857
to 0.13680286325153657

The error was not actually reduced as expected, hinting at problems with e.g. warmup, autocorrelation, or fat tails.

2.2 Compiling and running ALF

This section focuses on the “ALF interface” part of pyALF, i.e. how to compile ALF and run ALF simulations. This
revolves around the classes ALF_source and Simulation defined in the module py_alf that have already
been briefly introduced in Section 2.1.

We start with some imports:

from pprint import pprint # Pretty print

from py alf import ALF_source, Simulation # Interface with ALF

12 Chapter 2. Usage

pYALF Documentation

2.2.1 Class ALF_source

The Class py_alf.ALF_source points to a folder containing the ALF source code. It has the following signature:

class ALF_source (
alf_dir=os.getenv ('ALF_DIR', './ALF'"),
branch=None,
url="https://github.com/ALF-QMC/ALF.git"'

Where os.getenv ('ALF_DIR', './ALF') getsthe environment variable SALF_DIR if present and other-
wise returns ' . /ALF '. If the directory alf_dir does exist, the program assumes it contains the ALF source code
and will raise an Exception if that is not the case. If alf_dir does not exist, the source code will be cloned form
url. If branch is set, git checks it out.

We will just use the default:

alf_src = ALF_source ()

And see if it successfully found ALF:

alf_src.alf dir

' /home/jonas/Programs/ALF"

We can use the function py_alf.ALF _source.get_ham names () to see which Hamiltonians are imple-
mented:

alf src.get_ham_ names ()

['Kondo',
'Hubbard',
'Hubbard_Plain_Vanilla',
'tv',
'"LRC',
'Z22_Matter',
'Spin_Peierls']

And then view the list of parameters and their default values for a particular Hamiltonian. The Hamiltonian-specific
parameters are listed first, followed by the Hamiltonian-independent parameters.

pprint (alf_src.get_default_params ('Hubbard'))

2.2.2 Class Simulation

To set up a simulation, we create an instance of py_alf.Simulation, which has the signature

[class Simulation(alf_src, ham_name, sim_dict, **kwargs) }

where alf_srcisaninstanceof py_alf.ALF source,ham_name is the name of the Hamiltonian to simulate,
sim_dict is a dictionary of parameter: value pairs overwriting the default parameters and * *kwargs
represents optional keyword arguments.

The minimal set of required arguments does not overwrite any default parameters:

sim = Simulation(alf_src, 'Hubbard', {})

Before running the simulation, ALF needs to be compiled.

2.2. Compiling and running ALF 13

pYALF Documentation

sim.compile ()

Compiling ALF...
Cleaning up Prog/
Cleaning up Libraries/
Cleaning up Analysis/
Compiling Libraries

Compiling Analysis

Compiling Program

Parsing Hamiltonian parameters

filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian_
~Kondo_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Hubbard_smod.F90 Hamiltonians/Hamiltonian_
~Hubbard_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ Hubbard Plain Vanilla smod.F90 Hamiltonians/
<Hamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_
~read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_LRC_smod.F90 Hamiltonians/Hamiltonian_LRC_
wread_write_parameters.F90

filenames: Hamiltonians/Hamiltonian Z2 Matter_ smod.F90 Hamiltonians/Hamiltonian_
~Z2_Matter_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Spin_Peierls_smod.F90 Hamiltonians/
~Hamiltonian_Spin_Peierls_read_write_parameters.F90

Compiling program modules

Link program

Done.

Compiling Analysis

Compiling Program

Parsing Hamiltonian parameters

filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian_
~Kondo_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Hubbard_smod.F90 Hamiltonians/Hamiltonian_
<Hubbard_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ Hubbard_ Plain Vanilla_ smod.F90 Hamiltonians/
wHamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_
wread_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_LRC_smod.F90 Hamiltonians/Hamiltonian_LRC_
wread_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ Z2 Matter_smod.F90 Hamiltonians/Hamiltonian_
+Z2_Matter_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian Spin Peierls_smod.F90 Hamiltonians/
~Hamiltonian_Spin_Peierls_read_write_parameters.F90

Compiling program modules

Link program
Done.

Preparation of the simulation is done by executing the following command:

sim.run ()

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard
" for Monte Carlo run.

Create new directory.

Run /home/jonas/Programs/ALF/Prog/ALF.out

(continues on next page)

14 Chapter 2. Usage

pYALF Documentation

(continued from previous page)
ALF Copyright (C) 2016 - 2022 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain.
~conditions.
No initial configuration

It is strongly advised to take a look at the info file i nfo produced by ALF after a finished run, in particular the value
of “Precision Green” and “Precision Phase”. As a rule of thumb, the means should be of order 108 or smaller and
the max should not be bigger than 103, If they’re bigger, one should decrease the stabilization interval Nwrap (see
parameter list ' VAR_QMC' above). In our case, they’re about right.

sim.print_info_file ()

Model is : Hubbard

Lattice is : Square

unit cells : 36

of orbitals : 1

Flux_1 3 0.0000000000000000
Flux_2 g 0.0000000000000000

Twist as phase factor in bulk
HS couples to z-component of spin

Checkerboard : T

Symm. decomp : T

Finite temperture version

Beta 2 5.0000000000000000

dtau, Ltrot_eff: 0.10000000000000001 50
N_SUN : 2

N_FL 3 2

t 3 1.0000000000000000

Ham_U g 4.0000000000000000

Ham_chem 2 0.0000000000000000

No initial configuration, Seed_in 790789

Sweeps 5 20
Bins : 5

No CPU-time limitation

Measure Int. 5 1 50
Stabilization,Wrap : 10
Nstm : 5
Ltau : 1

of interacting Ops per time slice : 36

Default sequential updating
This executable represents commit 76el2b0e of branch master.

Precision Green Mean, Max : 2.5417763978441579E-011 2.2375287356268814E~
=007

Precision Phase, Max q 0.0000000000000000

Precision tau Mean, Max : 5.5915761887550577E-012 5.9682744746325511E~
008

Acceptance q 0.42958333333333332

Effective Acceptance 8 0.42958333333333332

CPU Time 3 2.7690582980000000

2.2. Compiling and running ALF 15

pYALF Documentation

2.2.3 Specifying parameters

Here is an example of a simulation with non-default parameters. We have changed the dimensions to 4 by 4 sites and
increased the interaction U to 4.0 and the number of bins calculated to 20. Since we did not change the compile-time
configuration (some of the **kwargs do), a recompilation is not required.

sim = Simulation(
alf_src,
'Hubbard',
{
Model specific parameters
'L1': 4,
'L2': 4,
'Ham_U': 4.0,
OMC parameters
'Nbin': 20,
}I
)

sim.run ()

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_
-L1=4_L2=4_U=4.0" for Monte Carlo run.
Create new directory.
Run /home/jonas/Programs/ALF/Prog/ALF.out
ALF Copyright (C) 2016 - 2022 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain.
~conditions.
No initial configuration

Note that the new simulation has been placed in ALF_data/Hubbard_L1=4_12=4_U=4.0 relative to the
current working directory. That is, simulations are placed in the folder {sim_root}/{sim_dir}, where
sim_root defaultsto 'ALF_data' and sim_dir is generated out of the Hamiltonian name and the non-default
model specific parameters. A behavior that can be overwritten through the * *kwargs. Note that Nbin does not
enter sim_dir, since it is a QMC parameter and not a Hamiltonian parameter.

The monitoring in the info file does not show any stabilization issues:

sim.print_info_file ()

===== /home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_L1=4_L2=4_
+U=4.0/info =====

Model 1is : Hubbard

Lattice is : Square

unit cells : 16

of orbitals : 1

Flux_1 g 0.0000000000000000
Flux_2 g 0.0000000000000000

Twist as phase factor in bulk
HS couples to z-component of spin

Checkerboard : T

Symm. decomp : T

Finite temperture version

Beta : 5.0000000000000000

dtau, Ltrot_eff: 0.10000000000000001 50
N_SUN : 2

N_FL : 2

t 8 1.0000000000000000

Ham_U : 4.0000000000000000

Ham_chem 8 0.0000000000000000

(continues on next page)

16 Chapter 2. Usage

pYALF Documentation

(continued from previous page)

No initial configuration, Seed_in 790789

Sweeps : 20

Bins 2 20

No CPU-time limitation

Measure Int. : 1 50
Stabilization,Wrap 2 10

Nstm 5 5

Ltau : 1

of interacting Ops per time slice : 16

Default sequential updating
This executable represents commit 76el2b0e of branch master.

Precision Green Mean, Max : 3.0903935060176945E-011 2.9012717530502163E~
=007

Precision Phase, Max g 0.0000000000000000

Precision tau Mean, Max : 7.6475551634990995E-012 1.3561035078213379E~
=007

Acceptance : 0.42600781250000003

Effective Acceptance 3 0.42600781250000003

CPU Time 2 3.1458244400000002

2.2.4 Series of MPI runs

Starting each run separately can be cumbersome, therefore we provide the following example, which creates a
list of Simulation instances that can be run in a loop, performing a sweep in U. To increase the statistics
of the results, MPI parallelization is employed. Since the default MPI executable mpiexec does not fit with
the MPI libraries used during compilation on the test machine, we have changed it to orterun. The option
mpiexec_args=['--oversubscribe'] hands over the flag ——oversubscribe to orterun, which
allows it to run more MPI tasks than there are slots available, see the Open MPI documentation for details.

sims = [
Simulation (
alf_src,
'Hubbard',
{
Model specific parameters
'L1': 4,
'L2': 4,
'Ham_U': U,
OMC parameters
'Nbin': 20,
}V
mpi=True,
n_mpi=4,
mpiexec='orterun',
mpiexec_args=['--oversubscribe'],
)
for U in [1.0, 2.0, 3.0]1]

sims

[<py_alf.simulation.Simulation at 0x72695d0ee210>,
<py_alf.simulation.Simulation at 0x72695£354b00>,
<py_alf.simulation.Simulation at 0x7269a954da70>]

© Note 1

2.2. Compiling and running ALF 17

https://www.open-mpi.org/doc

pYALF Documentation

The above employs Python’s list comprehensions, a convenient and readable way to create Python lists. Here is
a simple example, employing list comprehension (and f-strings):

>>> [f'x={x}' for x in [1, 2, 31]
['x=1", 'x=2', 'x=3"']

Since we are changing from non-MPI to MPI, ALF has to be recompiled:

A\ Warning

pYALF does not check how ALF has been compiled previously, so the user has to take care of issuing recompi-
lation if necessary.

sims[0] .compile ()

Compiling ALF...
Cleaning up Prog/
Cleaning up Libraries/
Cleaning up Analysis/
Compiling Libraries

Compiling Analysis

Compiling Program

Parsing Hamiltonian parameters

filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian_
~Kondo_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Hubbard_smod.F90 Hamiltonians/Hamiltonian_
<Hubbard_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ Hubbard Plain Vanilla smod.F90 Hamiltonians/
~Hamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_
~read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_LRC_smod.F90 Hamiltonians/Hamiltonian_LRC_
wread_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ Z2 Matter_ smod.F90 Hamiltonians/Hamiltonian_
~Z2_Matter_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Spin_Peierls_smod.F90 Hamiltonians/
~Hamiltonian_Spin_Peierls_read_write_parameters.F90

Compiling program modules

Link program

Done.

Compiling Analysis

Compiling Program

Parsing Hamiltonian parameters

filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian_
<Kondo_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian Hubbard_smod.F90 Hamiltonians/Hamiltonian_
~Hubbard_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Hubbard_Plain_Vanilla_ smod.F90 Hamiltonians/
~Hamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_
wread_write_parameters.F90

filenames: Hamiltonians/Hamiltonian LRC_smod.F90 Hamiltonians/Hamiltonian_ LRC_
wread_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Z2_Matter_smod.F90 Hamiltonians/Hamiltonian_
~Z2_Matter_read_write_parameters.F90

(continues on next page)

18

Chapter 2. Usage

https://docs.python.org/3/tutorial/datastructures.html#tut-listcomps
https://docs.python.org/3/reference/lexical_analysis.html#f-strings

pYALF Documentation

(continued from previous page)
filenames: Hamiltonians/Hamiltonian_Spin_Peierls_smod.F90 Hamiltonians/
~Hamiltonian_Spin_Peierls_read_write_parameters.F90
Compiling program modules

Link program
Done.

Loop over list of jobs:

for sim in sims:
sim.run ()

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_
<L1=4_1.2=4_U=1.0" for Monte Carlo run.
Create new directory.
Run /home/jonas/Programs/ALF/Prog/ALF.out

ALF Copyright (C) 2016 - 2022 The ALF project contributors

This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain.
wconditions.

No initial configuration
Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_
<L1=4_L2=4_U=2.0" for Monte Carlo run.
Create new directory.
Run /home/jonas/Programs/ALF/Prog/ALF.out

ALF Copyright (C) 2016 - 2022 The ALF project contributors

This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain.
wconditions.

No initial configuration
Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_
<L1=4_1.2=4_U=3.0" for Monte Carlo run.
Create new directory.
Run /home/jonas/Programs/ALF/Prog/ALF.out

ALF Copyright (C) 2016 - 2022 The ALF project contributors

This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain.
wconditions.

No initial configuration

ALF Copyright (C) 2016 - 2022 The ALF project contributors

This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain.
—conditions.

No initial configuration

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_
<L1=4 1.2=4 _U=2.0" for Monte Carlo run.

Create new directory.

Run /home/jonas/Programs/ALF/Prog/ALF.out

ALF Copyright (C) 2016 - 2022 The ALF project contributors

This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain.
~conditions.

No initial configuration

2.2. Compiling and running ALF 19

pYALF Documentation

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_
~L1=4_L2=4_U=3.0" for Monte Carlo run.
Create new directory.

Run /home/jonas/Programs/ALF/Prog/ALF.out

ALF Copyright (C) 2016 - 2022 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL

This is free software, and you are welcome to redistribute it under certain.
sconditions.

No initial configuration

for sim in sims:
sim.print_info_file()

2.2.5 Parallel Tempering

ALF offers the possibility to employ Parallel Tempering [4], also known as Exchange Monte Carlo [5], where simula-
tions with different parameters but the same configuration space are run in parallel and can exchange configurations.
A method developed to overcome ergodicity issues.

To use Parallel Tempering in pyALF, sim_dict has to be replaced by a list of dictionaries, for this we use again
Python’s list comprehension syntax. This does also imply mpi=True, since Parallel Tempering needs MPI.

sim = Simulation(
alf_src,
'Hubbard',
[

Model specific parameters

'L1': 4,

'L2': 4,

'Ham_U': U,

OMC parameters

'Nbin': 20,

'mpi_per parameter_set': 2

} for U in [2.5, 3.5]
] 14
mpi=True,
n_mpi=4,
mpiexec='orterun',
mpiexec_args=['—--oversubscribe'],

Recompile for Parallel Tempering:

sim.compile ()

Compiling ALF...
Cleaning up Prog/
Cleaning up Libraries/
Cleaning up Analysis/
Compiling Libraries

Compiling Analysis

Compiling Program

Parsing Hamiltonian parameters

filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian_
<Kondo_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian Hubbard_ smod.F90 Hamiltonians/Hamiltonian_

(continues on next page)

20 Chapter 2. Usage

pYALF Documentation

(continued from previous page)

~Hubbard_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ Hubbard_ Plain Vanilla smod.F90 Hamiltonians/
~Hamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_
~read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ LRC_smod.F90 Hamiltonians/Hamiltonian_LRC_
wread_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ Z2 Matter_ smod.F90 Hamiltonians/Hamiltonian__
~Z2_Matter_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian Spin_ Peierls_smod.F90 Hamiltonians/
~Hamiltonian_Spin_Peierls_read_write_parameters.F90

Compiling program modules

Link program

Done.

Compiling Analysis

Compiling Program

Parsing Hamiltonian parameters

filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian_
~Kondo_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Hubbard_smod.F90 Hamiltonians/Hamiltonian_
~Hubbard_read _write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ Hubbard_ Plain Vanilla_ smod.F90 Hamiltonians/
wHamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_
~read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_LRC_smod.F90 Hamiltonians/Hamiltonian_LRC_
~read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ 72 Matter_smod.F90 Hamiltonians/Hamiltonian_
-Z2_Matter_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Spin_Peierls_smod.F90 Hamiltonians/
~Hamiltonian_Spin_Peierls_read_write_parameters.F90

Compiling program modules

Link program

Done.

sim.run ()

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/temper_
<Hubbard_L1=4_12=4 U=2.5" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/temper_
~Hubbard_L1=4_12=4_U=2.5/Temp_0" for Monte Carlo run.
Create new directory.
Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/temper_
~Hubbard_L1=4_12=4_U=2.5/Temp_1" for Monte Carlo run.
Create new directory.
Run /home/jonas/Programs/ALF/Prog/ALF.out
ALF Copyright (C) 2016 - 2022 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain.
wconditions.
No initial configuration

ALF Copyright (C) 2016 - 2022 The ALF project contributors
This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
(continues on next page)

2.2. Compiling and running ALF 21

pYALF Documentation

This is free software,
wconditions.
No initial configuration

sim.print_info_file ()

(continued from previous page)

and you are welcome to redistribute it under certain.

The output from this command has been omitted for brevity.

2.2.6 Only preparing runs

In many cases, it might not be feasible to execute ALF directly through pyALF, for example when using an HPC
scheduler, but one might still like to use pyALF for preparing the simulation directories. In this case the two options
copy_binand only_prepof py_alf.Simulation.run () come in handy. Here we also demonstrate the
keyword arguments sim_root and sim_dir.

import numpy as np

JK_list = np.linspace (0.0, 3.0, num=11)
print (JK_1list)
sims = [
Simulation (
alf_src,
'Kondo',
{
"Model": "Kondo",
"Lattice_type": "Bilayer_square",
"Li": 16,
"L2": 16,
"Ham_JK": JK,
"Ham_Uf": 1.,
"Beta": 20.0,
"Nsweep": 500,
"NBin": 400,
"Ltau": 0,

Do not forget to recompile when switching from Parallel Tempering back to normal MPI runs.

[0.

by

"CPU_MAX": 48

mpi=True,
sim_root="KondoBilayerSquarelLl6",
sim dir=f"JK{JK:2.1£f}",

) for JK in JK_list

sims[0] .compile ()

Compiling ALF...
Cleaning up Prog/
Cleaning up Libraries/
Cleaning up Analysis/
Compiling Libraries

Compiling Analysis
Compiling Program
Parsing Hamiltonian parameters

0.3 0.6 0.91.21.51.82.12.42.7 3.]

(continues on next page)

22

Chapter 2. Usage

pYALF Documentation

(continued from previous page)

filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian_
~Kondo_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Hubbard_smod.F90 Hamiltonians/Hamiltonian_
~Hubbard_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ Hubbard Plain Vanilla smod.F90 Hamiltonians/
~Hamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_
~read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ LRC_smod.F90 Hamiltonians/Hamiltonian_LRC_
wread_write_parameters.F90

filenames: Hamiltonians/Hamiltonian Z2 Matter_ smod.F90 Hamiltonians/Hamiltonian_
~Z2_Matter_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian Spin_ Peierls_smod.F90 Hamiltonians/
~Hamiltonian_Spin_Peierls_read_write_parameters.F90

Compiling program modules

Link program

Done.

Compiling Analysis

Compiling Program

Parsing Hamiltonian parameters

filenames: Hamiltonians/Hamiltonian Kondo_smod.F90 Hamiltonians/Hamiltonian_
~Kondo_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Hubbard_smod.F90 Hamiltonians/Hamiltonian_
~Hubbard_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Hubbard Plain_Vanilla_ smod.F90 Hamiltonians/
~Hamiltonian_Hubbard Plain_Vanilla_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ tV_smod.F90 Hamiltonians/Hamiltonian_ tV__
wread_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_LRC_smod.F90 Hamiltonians/Hamiltonian_LRC_
~read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Z72_Matter_smod.F90 Hamiltonians/Hamiltonian_
~Z2_Matter_read _write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Spin_Peierls_smod.F90 Hamiltonians/
~Hamiltonian_Spin_Peierls_read_write_parameters.F90

Compiling program modules

Link program

Done.

for sim in sims:
sim.run (copy_bin=True, only_prep=True)

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/
~KondoBilayerSquareLl6/JK0.0" for Monte Carlo run.

Create new directory.

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/
~KondoBilayerSquareLl6/JK0.3" for Monte Carlo run.

Create new directory.

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/
~KondoBilayerSquareLl6/JK0.6" for Monte Carlo run.

Create new directory.

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/
~KondoBilayerSquareLl6/JK0.9" for Monte Carlo run.

Create new directory.

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/
~KondoBilayerSquareLl6/JK1.2" for Monte Carlo run.

(continues on next page)

2.2. Compiling and running ALF 23

pYALF Documentation

(continued from previous page)

Create new directory.

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/
~KondoBilayerSquareLl6/JK1.5" for Monte Carlo run.

Create new directory.

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/
~KondoBilayerSquareLl6/JK1.8" for Monte Carlo run.

Create new directory.

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/
~KondoBilayerSquareLl6/JK2.1" for Monte Carlo run.

Create new directory.

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/
~KondoBilayerSquareLl6/JK2.4" for Monte Carlo run.

Create new directory.

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/
~KondoBilayerSquareLl6/JK2.7" for Monte Carlo run.

Create new directory.

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/
~KondoBilayerSquareLl6/JK3.0" for Monte Carlo run.

Create new directory.

Now there are 11 directories, ready for the job scheduler.

'tree KondoBilayerSquareLl6

KondoBilayerSquareLl6
.0

ALF.out
parameters
seeds

.3

ALF .out
parameters
seeds

.6

ALF.out
parameters
seeds

.9

ALF.out
parameters
seeds

.2

ALF.out
parameters
seeds

.5

ALF.out
parameters
seeds

.8

ALF.out
parameters
seeds

.1

ALF.out
parameters
seeds

.4

ALF.out
parameters
seeds

T
FTTE 2 [ThE T

[
=~
=

SITTEITTEITTE

1T 1T 1T 1T ° 1 1T °
1T [T

(continues on next page)

24

Chapter 2. Usage

pYALF Documentation

(continued from previous page)

ol

ALF .out

parameters

seeds
.0

ALF.out

parameters

seeds

T
[TTR

o
=
w

[TT

12 directories, 33 files

2.3 Postprocessing

The following sections demonstrate the postprocessing features in pyALF, each section can be executed individually,
if QMC raw data from Section 2.2 is present.

e Basic analysis
o Custom/Derived Observables
o Checking warmup and autocorrelation times

o Symmetrization of correlations on the lattice

2.3.1 Basic analysis

As already shown in Section 2.1, the basic analysis can be executed through py _alf.Simulation.
analysis (), which in turn calls py_alf.analysis (). This section demonstrates how to directly use the
latter function and how to access and work with analysis results.

As a first step, some libraries and functions are imported. The Jupyter magic command $matplotlib widget
enables the Matplotlib Jupyter Widget Backend, which is not necessary in this part, but for the functions used in
Section 2.3.3, therefore it makes sense to establish it as a default.

Enable Matplotlib Jupyter Widget Backend
$matplotlib widget

Imports
import matplotlib.pyplot as plt # Plotting library
import numpy as np # Numerical libary

from py_alf.ana import load_res # Function for loading analysis results
from py_alf.analysis import analysis # Analysis function
from py alf.utils import find_sim dirs # Function for finding QMC bins

The function find_sim_dirs () returns a list of all directories containing a file named data . hb5, the file con-
taining all QMC measurements if ALF has been compiled with HDF5. We use it to conveniently list all simulations
run in the previous sections.

dirs = find_sim dirs/()
dirs

['"./ALF_data/Hubbard',

'./ALF_data/Hubbard_L1=4_1L2=4_U=1.0",
'./ALF_data/Hubbard_L1=4_12=4_U=2.0",
'./ALF_data/Hubbard_L1=4_L2=4_U=3.0",
'./ALF_data/Hubbard_L1=4_L2=4_U=4.0",

'./ALF_data/Hubbard_Square',
(continues on next page)

2.3. Postprocessing 25

https://github.com/matplotlib/ipympl

pYALF Documentation

(continued from previous page)

'./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_0"',
'./ALF_data/temper_Hubbard_ L1=4_12=4_U=2.5/Temp_1"]

Looping over this list, we call analysis () for each directory. The function reads QMC bins from data.h5, or
if this file does not exist alternatively from all files ending in _scal, _eqg and _tau. Furthermore, n_skip and
n_rebin are read from the file parameters. The analysis omits the first n_skip bins and combines n_rebin
original bins into a new one'. On the resulting bins, Jackknife resampling [6] is applied to estimate expectation values
and their standard error.

for directory in dirs:
analysis (directory)

2.3.1.1 Get analysis results

The analysis results are saved in each simulation directory, both in plain text in the folder res and as a pickled
Python dictionary in the file res . pk1.

The binary data from multiple res . pk1 files can be conveniently read with 1oad_res (), which returns a single
pandas DataFrame, a tabular data structure. It not only contains analysis results, but also the Hamiltonian-
specific parameters. The parameter names are in all lower case.

res = load_res(dirs)

./ALF_data/Hubbard

No orbital locations saved.
./ALF_data/Hubbard_L1=4_L2=4_U=1.0

No orbital locations saved.
./ALF_data/Hubbard_L1=4_12=4_U=2.0

No orbital locations saved.
./ALF_data/Hubbard_L1=4_L2=4_0U=3.0

No orbital locations saved.
./ALF_data/Hubbard_L1=4_L2=4_U=4.0

No orbital locations saved.
./ALF_data/Hubbard_Square

No orbital locations saved.
./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_0
No orbital locations saved.
./ALF_data/temper_Hubbard_L1=4_L12=4_U=2.5/Temp_1
No orbital locations saved.

The DataFrame has one row per simulation directory, which is also used as the index:

res.index

Index (['./ALF_data/Hubbard', './ALF_data/Hubbard L1=4_1L2=4_U=1.0",
'./ALF_data/Hubbard_L1=4_1L2=4_U=2.0",
'./ALF_data/Hubbard_L1=4_12=4_U=3.0",
'./ALF_data/Hubbard_L1=4_L2=4_U=4.0', './ALF_data/Hubbard_Square',
'./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_0"',
'./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_1"'1],

dtype='object')

Column indices can be accessed through:

res.columns

! We will elaborate further on rebinning in Section 2.3.3.

26 Chapter 2. Usage

https://docs.python.org/3/library/pickle.html#module-pickle
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

pYALF Documentation

Index (['continuous', 'ham_chem', 'ham_ t', 'ham_t2', 'ham_tperp', 'ham_u',
'ham_u2', 'mz', '11', '12"',
'SpinZ_tauK', 'SpinZ_tauK_err', 'SpinZ_tauR', 'SpinZ_tauR_err',
'SpinZ_tau_lattice', 'lattice', 'Acc_Temp_scal_sign',

'Acc_Temp_scal_sign_err', 'Acc_Temp_scall', 'Acc_Temp_scalO_err'],
dtype='object', length=115)

In the following, we will only use results from one simulation, corresponding to one row in the DataFrame. It is
selected with:

item = res.loc['./ALF_data/Hubbard']

Which is equivalent to

[item = res.iloc|[0]

Most, but not all of the same data is also stored in plain text form in the folder ALF_data/Hubbard/res:

!1ls ——color -p ALF_data/Hubbard/res

Den_eq_K Green_eq_K Part_scal SpinT_tau/ SpinZ_eq K
Den_eq_K_sum Green_eqg K_sum Pot_scal SpinXY_eq_K SpinZ_eq_ K_sum
Den_eq_R Green_eq_R SpinT_eq_K SpinXY_eq K_sum SpinZ_eq R
Den_eq_ R_sum Green_eq R_sum SpinT_eq K _sum SpinXY_eq_ R SpinZ_eq R_sum
Den_tau/ Green_tau/ SpinT_eqg_ R SpinXY_eq R_sum SpinZ_tau/
Ener_scal Kin_scal SpinT_eqg_R_sum SpinXY_tau/

2.3.1.1.1 Scalar observables

Scalar observable results are stored as multiple scalar values, storing the sign, observable expectation value and their
statistical errors. Here are, for example, the results for the internal energy Ener_scal, consisting of four scalar
values:

for i in item.index:
if i.startswith('Ener_scal'):
print (i, item[i])

Ener_scal_sign 1.0
Ener_scal_sign_err 0.0

Ener_scal0 -29.821914139694446
Ener_scalO_err 0.13032001866398857

Note the 0 in Ener_scal0and Ener_scal0_err. Thisis the index in the vector of observables Ener scal,
since a scalar observable can hold a vector of scalars.

The same data is present in this plain text file:

lcat ALF_data/Hubbard/res/Ener_scal

Sign: 1.0 0.0
-2.982191413969444582e+01 1.303200186639885683e-01

2.3. Postprocessing 27

pYALF Documentation

2.3.1.1.1.1 Example

Here is a simple example that demonstrates the convenience of working with pandas DataFrames. We select out of
all simulations the one with L, = 4 and plot their internal energy against The value of the Hubbard U'.

Create figure with axis labels

fig, ax = plt.subplots()

ax.set_xlabel (r'Hubbard interaction $US')
ax.set_ylabel (r'Internal energy S$ES')

Select only rows with 11==4 and sort by ham_u
df = res[res.ll == 4].sort_values (by='ham u'")

Plot data
ax.errorbar (df .ham_u, df.Ener_scal0O, df.Ener_scalO_err);

—13]

14 .

—15 .

—16 .
17 .

—18 .

Internal energy E

—19 .

=20 .

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Hubbard interaction U

2.3.1.1.2 Equal-time correlation functions

ALF and pyALF offer support for correlation functions of the form

C(r,ny,ny) = NL Z (O(rg,n1)O(rg + 7,n5)) — (O(ny)) (O(ny))

2.1)
1 .
C(k7n17n2> = ﬁ Z ezer<T’n17n2)

Where the sums go over the unit cells of the finite size Bravais lattice, NV, is the number of unit cells and n,, n,
denominate the orbitals within a unit cell.

Each observable produces a set of members in the results, these are for example the ones for the equal-time Green’s
function:

for i in item.index:
if i.startswith('Green_eq'):
print (i, np.shape(item[i]))

Green_egK (1, 1, 36)
Green_eqgK_err (1, 1, 36)
Green_egK_sum (36,)
Green_egK_sum_err (36,)

(continues on next page)

28 Chapter 2. Usage

pYALF Documentation

(continued from previous page)
Green_eqgR (1, 1, 36)
Green_eqgR_err (1, 1, 36)
Green_egqR_sum (36,)
Green_egR_sum_err (36,)
Green_eq_lattice ()

Members ending in K, K_err, R and R_err correspond to Eq. (2.1) and their errors. They have the shape
(Nogys Nows IN,.), where N, is the number of orbitals per unit cell. The objects ending in _sum have been traced
over the orbital degrees of freedom. To correctly interpret the index over the unit cells, the member ending in

_lattice is a dictionary containing the parameters for creating a Bravais lattice object py_alf.Lattice:

item['Green_eq lattice']

{'L1': array([6., 0.1),
'L2': array([0., 6.]),
'al': array([1., 0.]),
'a2': array([0., 1.1)}

from py alf import Lattice
latt = Lattice(item['Green_eqg lattice'])

Here is, for example, the equal-time Greens function at k = (7, 7) with its error:

n = latt.k_to_n([np.pi, np.pil)
print (item.Green_eqgK_sum[n], item.Green_egK_sum_err[n])

0.06526692607778947 0.001304607020942857

The lattice object offers functions for conveniently plotting correlation functions in real and momentum space. Below,
we plot the Spin-Spin correlations in real and momentum space, showing signs of antiferromagnetic order.

latt.plot_r(item.SpinZ_egR_sum)

4 , . .
3L .
2t - 0.6
1k i 0.4
= 0.2
el
0.0
1k .
-0.2
2L .
-3 -2 0 2 4
Fx

latt.plot_k (item.SpinZ_egK_sum)

2.3. Postprocessing 29

pYALF Documentation

AF T T T 7
)| H

5L 1 B4

(L I E

s |0,

1L 1 H
oL §
—3E_ . . .
-2 0 2 4

Kx

The plain text result files ending in _K and _R contain momentum and real-space resolved correlations, respectively.
Here is an excerpt from the Greens function in momentum space:

'head —n 3 ALF_data/Hubbard/res/Green_eq_ K

kx ky (0, 0) -
strace over n_orb

-2.09440 -2.09440 1.4417820888e-01 6.0737564928e-03 1.
~4417820888e-01 6.0737564928e-03

-2.09440 -1.04720 1.0106239637e+00 1.1329334950e-02 1.

+0106239637e+00 1.1329334950e-02

Where (0, 0) refers to the orbital indices. Since there is only one orbital per unit cell, this is the only combination
and identical to the trace over all orbitals. The first two columns represent the coordinates, followed by alternating
expectation values and standard errors.

2.3.1.1.3 Time-displaced correlation functions

The structure for time-displaced correlation functions is very similar to equal-time correlations, but by default only
the trace over the orbital degrees of freedom is stored. These are the results for the time-displaced Green function:

for i in item.index:
if i.startswith('Green_tau'):
print (i, np.shape(item[i]))

Green_tauK (51, 36)
Green_tauK_err (51, 36)
Green_tauR (51, 36)
Green_tauR_err (51, 36)
Green_tau_lattice ()

Here we plot the time-displaced Greens function at r» = 0:

Create figure with axis labels and logscale on y—-axis
fig, ax = plt.subplots()

ax.set_xlabel (r'S\taus$')

ax.set_ylabel (r'sG(r=0, \tau)$'")

ax.set_yscale('log"')

(continues on next page)

30 Chapter 2. Usage

pYALF Documentation

Create lattice object
latt = Lattice(item['Green tau lattice'])

Get index corresponding to r=0

n = latt.r_to_n ([0,

Plot data
ax.errorbar (

item.dtau*range (len(item.Green_tauR[:,

item.Green_tauR[:,
item.Green_tauK_err|[:,

)i

nl,

n]j

nl)),

(continued from previous page)

Glr=0,T1)

10—1_

Again, plain text results data are available in the folder res. There is a separate folder for each k-point and the data

forr = 0:

!ls ——color -p ALF_data/Hubbard/res/Green_tau

O O O O O

.00_0.00/ 1.05_0.00/

.00_-1.05/ -1.05_-1.05/
.00_1.05/ -1.05_1.05/
.00_-2.09/ 1.05_-1.05/
.00_2.09/ 1.05_1.05/

0.00_3.14/ -1.05_-2.09/
-1.05_0.00/ -1.05_2.09/

1.05_-2.09/
1.05_2.09/
-1.05_3.14/
1.05_3.14/
-2.09_0.00/
2.09_0.00/
-2.09_-1.05/

-2.09_.1.05/
2.09_-1.05/
2.09_1.05/
-2.09_-2.09/
-2.09_2.09/
2.09_-2.09/
2.09_.2.09/

-2.09_3.14/ 3.14_3.14/

W wwwwN

.09_3.14/ RO
.14_0.00/
.14_-1.05/
.14_1.05/
.14 _-2.09/
.14_2.09/

The data is in the following format with tree columns: 7, expectation value and error:

'head ALF_data/Hubbard/res/Green_tau/0.00_0.00/dat

.0000000
.1000000
.2000000
.3000000
.4000000
.5000000
.6000000
.7000000
.8000000
.9000000

O O O O O O oo o o

O O O O O O o o o o

.03348685
.01686925
.01793592
.01575110
.01096207
.00372588
.01155079
.00473281
.00177665
.00691428

O O O O O O o o o o

.00547912
.00585814
.00935758
.00906065
.00657646
.00710389
.00842672
.01066049
.00989675
.00589819

2.3. Postprocessing

31

pYALF Documentation

2.3.2 Custom/Derived Observables

The previous section showed how to use the observables defined directly in the ALF simulation, but one often needs
quantities derived from these. pyALF offers a convenient way for getting results for such derived observables, in-
cluding a way to check for warmup and autocorrelation issues (more on the latter in the next section).

As usual, we start with some imports:

Enable Matplotlib Jupyter Widget Backend
$matplotlib widget

import matplotlib.pyplot as plt # Plotting library
import numpy as np # Numerical libary

from py_alf.ana import load_res # Function for loading analysis results

from py_alf.analysis import analysis # Analysis function
from py_alf.utils import find _sim dirs # Function for finding QOMC bins

Create list with directories to analyze:

dirs = find_sim dirs/()
dirs

['./ALF_data/Hubbard',

'./ALF_data/Hubbard_L1=4_1L2=4_U=1.0",
'./ALF_data/Hubbard_L1=4_12=4_0U=2.0",
'./ALF_data/Hubbard_L1=4_12=4_U=3.0",
'./ALF_data/Hubbard_L1=4_1L2=4_U=4.0",

'./ALF_data/Hubbard_Square',
'./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_0"',
'./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_1"]

The custom observables are defined in a Python dictionary, where the keys are the names of the new observables.
The value is another dictionary in the format:

{'needs': some_list,
'function': some_function,
'kwargs': some_dict, }

Where some_1list is a list of observable names, this can be any combination of scalar, equal-time, or time-
displaced observables. They are being read by py_alf.ana.ReadObs. These Jackknife bins as well as kwargs
from some_dict are handed to some_ funct ion with a separate call for each bin. Currently, only scalars and 1d
arrays are supported as return value of some_function. We go through some examples to make this procedure
clearer.

We start with an empty dictionary, which will hold all the custom observable definitions:

custom_obs = {}
The first custom observable will just be the square of the energy. For this, we define a function taking three arguments,
which correspond to one jackknifed bin from py_alf.ana.read scal():
o obs: Array of observable values
e sign: Float
e N_obs: Length of obs, in this case 1.

The next step is to add an entry to custom_obs. The name of the new observable shall be E_squared. It needs the
observable Ener_scal, the function defined previously, and we don’t hand over any keyword arguments.

32 Chapter 2. Usage

pYALF Documentation

def obs_squared(obs, sign, N_obs):
"""Square of a scalar observable.

obs.shape = (N_obs,)

mmn

return obs[0]**2 / sign

Energy squared

custom_obs['E_squared']= {
'needs': ['Ener_scal'],
'function': obs_squared,
'kwargs': {}

Another custom observable shall be the potential energy divided by kinetic energy. The approach is similar to before,
except that this now uses two observables Pot_scal and Kin_scal:

def E_pot_kin (E_pot_obs, E_pot_sign, E_pot_N_obs,
E_kin_obs, E_kin_sign, E_kin_N_obs) :
"""Ratio of two scalar observables, first observable divided by second."""
return E_pot_obs/E_kin_obs / (E_pot_sign/E_kin_sign)

Potential Energy / Kinetic Energy
custom_obs['E_pot_kin']= {
'needs': ['Pot_scal', 'Kin_scal'],
'function': E_pot_kin,
'kwargs': {}

Finally, we want to calculate some correlation ratios. A correlation ratio is a renormalisation group invariant quantity,
that can be a powerful tool for identifying ordered phases and phase transitions. It is defined as:

O(k, +9)

R(O.k) =1- =585

(2.2)
Where O(k) is a correlation function that has a divergence at k = k, in the ordered phase and ¢ scales with 1/L,
where L is the linear system size. A usual choice for J is the smallest & on the finite-sized Bravais lattice. With these
properties, R(O, k,) will take only one of two values in the thermodynamic limit: 0 in the unordered phase and 1 in
the ordered phase.

The above can be generalized, to an average over multiple singular points &; and distances from those points 9,
which results in:

N,
R=_L gk: 1 N 25 Otk £ 95) 2.3)
Nk i=1 O(kz)

Furthermore, the correlation function might have an orbital structure to be considered:
O(k) =Y O(k),, 1M, 1, (24)
n,m

All in all, this can be expressed in a function like this:

def R _k(obs, back, sign, N_orb, N_tau, dtau, latt,
ks=((0., 0.),), mat=None, NNs=((1, 0), (O, 1), (-1, 0), (0, -1))):
"""Calculate correlation ratio, an RG-invariant quantity derived from
a correlation function.

Parameters

obs : array of shape (N_orb, N_orb, N_tau, latt.N)
Correlation function, the background is already subtracted.

(continues on next page)

2.3. Postprocessing 33

pYALF Documentation

(continued from previous page)

back : array of shape (N_orb,)
Background of Correlation function.
sign : float
Monte Carlo sign.
N _orb : int
Number of orbitals per unit cell.
N_tau : int
Number of imaginary time slices. 1 for equal-time correlations.
dtau : float
Imaginary time step.
latt : py_alf.Lattice
Bravais lattice object.
ks : list of k-points, default=((0., 0.),)
Singular points of the correlation function in the intended order.
mat : array of shape (N_orb, N_orb), default=None
Orbital structure of the order parameter. Default: Trace over orbitals.
NNs : list of tuples, default=((1, 0), (0, 1), (-1, 0), (0, -1))
Deltas in terms of primitive k-vectors of the Bravais lattice.

mmn

if mat is None:

mat = np.identity (N_orb)
out = 0
for k in ks:

n = latt.k_to_n (k)

J1 (obs[..., n].sum(axis=-1) * mat) .sum()
J2 =0
for NN in NNs:
i = latt.nnlistk[n, NN[O], NN[1]]
J2 += (obs[..., i].sum(axis=-1) * mat).sum() / len (NNs)
out += (1 - J2/J1)

return out / len (ks)

This function works for both equal-time and time-displaced correlations. The first 7 arguments (obs, back,
sign, N_orb, N_tau, dtau, latt)aresupplied by analysis () if acorrelation function is requested
in needs. The optional keyword arguments specify the singular & points, the orbital structure and §; to be considered.

Correlation ratios for ferromagnetic and antiferromagnetic order can now be defined with:

RG-invariant quantity for ferromagnetic order
custom_obs['R_Ferro']= {

'needs': ['SpinT_eq'],

'function': R_k,

'kwargs': {'ks': [(0., O0.)1}

RG-invariant quantity for antiferromagnetic order

custom_obs['R_AFM']= {
'needs': ['SpinT_eq'],
"function': R_k,
'kwargs': {'ks': [(np.pi, np.pi)l?}

def obs_k (obs, back, sign, N_orb, N_tau, dtau, latt,
ks=((0., 0.),), mat=None) :
"""Mean of correlation function at one, or multiple k-points.

Calculates integral over tau (=susceptibility) if time-displaced
correlation is supplied.
(continues on next page)

34 Chapter 2. Usage

pYALF Documentation

(continued from previous page)

Parameters
obs : array of shape (N_orb, N_orb, N_tau, latt.N)
Correlation function, the background is already subtracted.
back : array of shape (N_orb,)
Background of Correlation function.
sign : float
Monte Carlo sign.
N_orb : int
Number of orbitals per unit cell.
N_tau : int
Number of imaginary time slices. 1 for equal-time correlations.
dtau : float
Imaginary time step.
latt : py_alf.Lattice
Bravais lattice object.
ks : list of k-points, default=[(0., 0.)]
mat : array of shape (N_orb, N_orb), default=None
Orbital structure. Default: Trace over orbitals.

mmn

if mat is None:

mat = np.identity (N_orb)
out = 0
for k in ks:

n = latt.k_to_n (k)

if N_tau ==
out += (obs[:, :, 0, n] * mat).sum()
else:
out += (obs[..., n].sum(axis=-1) * mat) .sum() *dtau

return out / len (ks)

Correlation of Spin z-component at k=(pi, pi)
custom_obs['SpinZ pipi']l= {

'needs': ['SpinZ_eq'],

'function': obs_k,

'kwargs': {'ks': [(np.pil, np.pi)]}

Correlation of Spin x+y—-component at k=(pi, pi)
custom_obs['SpinXY_pipi']l= {

'needs': ['SpinXY_eq'],

"function': obs_k,

'kwargs': {'ks': [(np.pi, np.pi)l?}

Correlation of total Spin at k=(pi, pi)

custom_obs['SpinXYZ_pipi']l= {
'needs': ['SpinT_eq'],
'function': obs_k,
'kwargs': {'ks': [(np.pi, np.pi)]}

The same definitions for custom_obs are also written in the local file custom_obs . py to be used in further
sections.

To now analyze with these custom observables, the dictionary has to be handed over as a keyword argument to
analysis (). The analysis skips a directory by default if the QMC bins file data.h5 and the parameter file
parameters are both older than res.pkl, which is the case since res.pkl has been freshly created in the

2.3. Postprocessing 35

pYALF Documentation

previous section. Therefore, we use the option always=True to overwrite this behavior.

The results are loaded the same way as in the previous section:

res = load_res (dirs)

./ALF_data/Hubbard

No orbital locations saved.
./ALF_data/Hubbard_L1=4_L2=4_U=1.0

No orbital locations saved.
./ALF_data/Hubbard_L1=4_L2=4_U=2.0

No orbital locations saved.
./ALF_data/Hubbard_L1=4_L2=4_U=3.0

No orbital locations saved.
./ALF_data/Hubbard_L1=4_L2=4_U=4.0

No orbital locations saved.
./ALF_data/Hubbard_Square

No orbital locations saved.
./ALF_data/temper_Hubbard_L1=4_L12=4_U=2.5/Temp_0
No orbital locations saved.
./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_1
No orbital locations saved.

Access to the values is analogues to scalar observables:

Create figure with two axes and axis labels
fig, (axl, ax2) = plt.subplots(2, 1,
sharex=True,
constrained_layout=True)
axl.set_ylabel (r'SE_{\rm pot} / E_{\rm kin}$")
ax2.set_ylabel (r'S$SR_{\rm AFM}S$")
ax2.set_xlabel (r'Hubbard interaction US'")

Select only rows with 11==4 and sort by ham_u
df = res[res.ll == 4].sort_values (by='ham u'")

Plot data
axl.errorbar (df.ham _u, df.E_pot_kin, df.E_pot_kin_err)
ax2.errorbar (df .ham_u, df.R_AFM, df.R_AFM_err);

0.6

Rarm

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Hubbard interaction U

36 Chapter 2. Usage

pYALF Documentation

2.3.3 Checking warmup and autocorrelation times

Two common challenges in Monte Carlo studies are ensuring that the measured bins represent equilibrated config-
urations and that different bins are statistically independent. In this section, we will briefly explain these issues and
present the tools pyALF offers for dealing with them.

2.3.3.1 Preparations

As a first step, we use the same import as in previous sections.

Enable Matplotlib Jupyter Widget Backend
$matplotlib widget

from py alf.utils import find_sim _dirs # Function for finding QMC bins

We also import the functions py_alf.check_warmup () and py_alf.check_rebin (), which play the
main role in this section.

from py_alf import check_rebin, check_warmup

Finally, from the local file custom_obs . py, we import the same custom_obs defined in the previous section.

from custom_obs import custom_obs

For demonstration purposes, we run a simulation with very small bins.

from py alf import ALF_source, Simulation

sim = Simulation (
ALF_source(),
'Hubbard',
{
Model specific parameters
'L1': 4,
'L2': 4,
'Ham_U': 5.0,
OMC parameters
'Nbin': 5000,
'Nsweep': 5,
'Ltau': 0,
}I
)
sim.compile ()
sim.run ()

Compiling ALF...
Cleaning up Prog/
Cleaning up Libraries/
Cleaning up Analysis/
Compiling Libraries

Compiling Analysis

Compiling Program

Parsing Hamiltonian parameters

filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian__
<wKondo_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ Hubbard_ smod.F90 Hamiltonians/Hamiltonian_
~Hubbard_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Hubbard_Plain_Vanilla_ smod.F90 Hamiltonians/
~Hamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90

(continues on next page)

2.3. Postprocessing 37

pYALF Documentation

(continued from previous page)

filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_
~read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ LRC_smod.F90 Hamiltonians/Hamiltonian_LRC_
wread_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_ Z2 Matter_ smod.F90 Hamiltonians/Hamiltonian__
~Z2_Matter_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Spin_Peierls_smod.F90 Hamiltonians/
~Hamiltonian_Spin_Peierls_read_write_parameters.F90

Compiling program modules

Link program

Done.

Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_
<L1=4_12=4_U=5.0" for Monte Carlo run.

Create new directory.

Run /home/jonas/Programs/ALF/Prog/ALF.out

ALF Copyright (C) 2016 - 2022 The ALF project contributors

This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain.
wconditions.

No initial configuration

Compiling Analysis

Compiling Program

Parsing Hamiltonian parameters

filenames: Hamiltonians/Hamiltonian_Kondo_smod.F90 Hamiltonians/Hamiltonian_
~Kondo_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian Hubbard_ smod.F90 Hamiltonians/Hamiltonian_
~Hubbard_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Hubbard_Plain_Vanilla_ smod.F90 Hamiltonians/
~Hamiltonian_Hubbard_Plain_Vanilla_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_tV_smod.F90 Hamiltonians/Hamiltonian_tV_
wread_write_parameters.F90

filenames: Hamiltonians/Hamiltonian LRC_smod.F90 Hamiltonians/Hamiltonian_ LRC_
wread_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Z2_Matter_smod.F90 Hamiltonians/Hamiltonian_
~Z2_Matter_read_write_parameters.F90

filenames: Hamiltonians/Hamiltonian_Spin_Peierls_smod.F90 Hamiltonians/
~Hamiltonian_Spin_Peierls_read _write_parameters.F90

Compiling program modules

Link program

Done.
Prepare directory "/home/jonas/Programs/pyALF/doc/source/usage/ALF_data/Hubbard_
~L1=4_12=4 _U=5.0" for Monte Carlo run.
Create new directory.
Run /home/jonas/Programs/ALF/Prog/ALF.out

ALF Copyright (C) 2016 - 2022 The ALF project contributors

This Program comes with ABSOLUTELY NO WARRANTY; for details see license.GPL
This is free software, and you are welcome to redistribute it under certain.
~conditions.

No initial configuration

We set the directories to be considered.

dirs = find_sim dirs()
dirs

38 Chapter 2. Usage

pYALF Documentation

['"./ALF_data/Hubbard',

'./ALF_data/Hubbard_L1=4_12=4_U=1.0",
'./ALF_data/Hubbard_L1=4_L2=4_U=2.0",
'./ALF_data/Hubbard_L1=4_12=4_0U=3.0",
'./ALF_data/Hubbard_L1=4_12=4_U=4.0",
'./ALF_data/Hubbard_L1=4_L2=4_U=5.0",

'./ALF_data/Hubbard_Square',
'./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_0"',
'./ALF_data/temper_Hubbard_L1=4_L2=4_U=2.5/Temp_1"]

2.3.3.2 Check warmup

A Monte Carlo simulation creates a time series of configurations through stochastic updates. Usually, measurements
from a number of updates get combined in one so-called bin. In the case of ALF, Nsweep sweeps create one bin of
measurements (for more details on updating procedures we refer to the ALF documentation). Usually, the simulation
starts in a non-optimal state and it takes some time to reach equilibrium. Bins from this “warming up” period should
be dismissed before calculating results. This is achieved by setting the variable N_skip in the file parameters,
which will make the analysis omit the first N_skip bins.

A\ Warning

Different observables can have different warmup and autocorrelation times. For example, charge degrees of
freedom may equilibrate much faster than spin degrees of freedom. Or a sum of observables might have much
shorter autocorrelation times than an individual observable, e.g. the total spin versus one spin component.

To judge the correct value for N_skip, pyALF offers the function check_warmup (), which plots the time series
of bins for a given list of scalar and custom observables. It can be used with the previous simulations as:

warmup_widget = check_warmup (

dirs,

["Ener_scal', 'Kin_scal', 'Pot_scal',
'E_pot_kin', 'R _Ferro', 'R_AFM',
'SpinZ_pipi', 'SpinXY_pipi', 'SpinXYZ_pipi'],

custom_obs=custom_obs, gui='ipy'

The first argument is a list of directories containing simulations, the second argument specifies which observables to
plot, the keyword argument custom_obs is needed, when plotting custom observables, e.g. E_pot_kin and gui
specifies which GUI framework to use. With gui="'1ipy", the function returns a Jupyter Widget, which allows
to seamlessly work within Jupyter. Another option would be gui="tk"', which opens a separate window using
tkinter. The latter option might be suitable when working directly from a shell.

The variable N_skip can be directly changed in the GUI, which automatically updates the file parameters.

warmup_widget

2.3. Postprocessing 39

https://alf.physik.uni-wuerzburg.de/doc.pdf
https://ipywidgets.readthedocs.io
https://docs.python.org/3/library/tkinter.html#module-tkinter

pYALF Documentation

10

_15 E

_20 -

0.0

—0.2 -

-0.4 Mmdﬂ-ﬁﬁ‘d

Ener scal

E pot kin

SpinZ_pipi
10.0
7.5 1
5.0 1
2.5 7
T T
20 40
Bin number

Kin_scal
_18 -
_2{} -
R Ferro
20+
0_
—20 - i i
SpinXY _pipi
T
[] i m
4 - T Ar
s i
2 .

Bin number

Zoom rect

Pot_scal
9 -
B .
? -
R_AFM
1.0 4
0.8 1
0.6
0.4 T T
SpinXYZ_pipi
PR
4 - - i
4
5 |
2 -
20 40
Bin number

JALF _data/Hubbard L1=4_[2=4 U=40

JALF_data/Hubbard_L1=4_L2=4 U=5.0

JALF_data/Hubbard_Square
Next MN_max: | 40 = M_skip: | 3 = Clear log
» Log

2.3.3.3 Check rebin

When estimating statistical errors, the analysis assumes different bins to be statistically independent. As a result, one
bin must span over enough updates to generate statically independent configurations, or in other words, a bin must be
larger than the autocorrelation time. Otherwise the statistical errors will be underestimated. To address this issue,
the analysis employs so-called rebinning, which combines N_rebin bins into one new bin. The pyALF function
check_rebin () helps in determining the correct N_rebin. It plots the errors of the chosen observables against
N_rebin. With enough statistics, one should see growing errors with increasing N_rebin until a saturation point
is reached, this saturation point marks a suitable value for N_rebin. The usage of check_rebin () is very
similar to check_warmup ().

rebin_widget =

dirs,

check_rebin (

['"Ener_scal', 'Kin_scal', 'Pot_scal',
'E_pot_kin', 'R _Ferro', 'R_AFM',
'SpinZ_pipi', 'SpinXY_pipi',

custom_obs=custom_obs,

'SpinXYZ_pipi'l,
gui="ipy"

40

Chapter 2. Usage

pYALF Documentation

Below, we can see how different observables have different autocorrelation times. While the error of the kinetic
energy saturates already at N,,;, = 3, the correlations of the z component of the spin at (7, 7) (SpinZ_pipi)
need N, ~ 40. For the correlations of the total spin (SpinXYZ_pipi), on the other hand, N ,;, = 1is
sufficient.

The improvement from SpinZ_pipi to SpinXYZ_pipi is a good example for the concept of an improved
estimator: The simulated Hubbard model is SU(2) symmetric, therefore correlations of the x, y and z components of
the spin are equivalent, but with the chosen parameter Mz=True (cf. Section 2.2) the auxiliary field couples to the z
component of the spin. As a result, the SU(2) symmetry is broken for an individual auxiliary field configuration, but
restored by sampling the field configurations. Therefore, measuring the spin correlations through the z component,
the x-y plane, or the full spin are in principle equivalent. But the latter option produces the most precise results and
has the shortest autocorrelation times, because it explicitly restores the SU(2) symmetry instead of “waiting” for the
sampling to do that.

Furthermore, the ferromagnetic correlation ratio R, doesn’t seem to converge at all in the considered range of
N, pin- This is connected to the fact that the system is not close the ferromagnetic order and therefore R, is a bad
observable.

rebin_widget

Ener scal err

Kin scal err

Pot scal err

0.009 -
0.011
0.010 -
0.010 - 0.008 1
0.008 - 0.009 0.007 -
T T T T T T T T T
E pot kin_err R Ferro_err R _AFM err
50 4 0.0208
0.00040 - 0.0206 4
0.00035 - 407 0.0204 -
0.00030 30 4 0.0202
1 T T T T T T T T
SpinZ_pipi_err SpinXY _pipi_err SpinXYZ_pipi_err
0.100 - 0.18 -
0.112
0.075 -
0.17 | 0.110
0.050 -
1 T T T T T T T T
0 50 100 0 50 100 0 50 100
M_rebin N_rebin MN_rebin
_FALF:dataFHubbard:U=4:L2=4:U=3.D
JALF_data/Hubbard L1=4_|2=4 U=4.0 I
JALF_data/Hubbard L1=4 | 2=4 U=5.0
Next N_rebin: | 40 = Clear log
» Log

The next section will also show options for an improved estimator by employing symmetry operations on the Bravais

2.3. Postprocessing 41

pYALF Documentation

lattice.

2.3.4 Symmetrization of correlations on the lattice

The pyALF analysis offers an option to symmetrize correlation functions, by averaging over a list of symmetry oper-
ations on the Bravais lattice. This feature is meant to be used as an improved estimator, meaning to explicitly restore
symmetries of the model lost due to imperfect sampling, which increases the quality of the data.

For this feature, the user has to supply a list of functions f;, taking as arguments an instance of py_alf.Lattice
and an integer corresponding to a k-point of the Bravais lattice and returning an integer corresponding to the trans-
formed k-point of the Bravais lattice. The analysis then averages the correlation over all transformations:

~ 1 X
C(ny,) = = >_ C(f;(latt,ny))

i=1

© Note

This symmetrization feature does not affect custom observables, but only the default analysis. Improved estimators
would have to be included directly in the definition of custom observables.

The demonstration begins, as usual, with some imports:

Enable Matplotlib Jupyter Widget Backend
$matplotlib widget

import matplotlib.pyplot as plt # Plotting library
import numpy as np # Numerical libary
from custom_obs import custom_obs # Custom observable specifications

from py_alf import Lattice # Defines Bravais lattice object
from py_alf.ana import load_res # Function for loading analysis results
from py_alf.analysis import analysis # Analysis function

from local file custom_obs.py

The Hubbard model on a square lattice possesses a fourfold rotation symmetry (= C; symmetry). To restore this
symmetry, a list of all possible realizations of it has to be handed to the analysis. These are: rotation by 0 or 2w
(= identity), rotation by 7 /2, rotation by 7 and rotation by 37 /2.

Define list of transformations (Lattice, 1) —> new_1

Default analysis will average over all listed elements

sym_c4 = [
lambda latt,
lambda latt,
lambda latt,
lambda latt,

i,

latt.rotate(i, np.pi*0.5),
latt.rotate (i, np.pi),
latt.rotate(i, np.pi*1.5),

[

We set the directory to be analyzed:

directory = './ALF_data/Hubbard'

We analyze without symmetrization and load results.

analysis(directory, symmetry=None, custom_obs=custom_obs, always=True)
res_nosym = load_res([directory]).iloc[0]

42 Chapter 2. Usage

pYALF Documentation

Analyzing ./ALF_data/Hubbard
/home/jonas/Programs/pyALF/doc/source/usage
Custom observables:

custom E_squared ['Ener_scal']
custom E_pot_kin ['Pot_scal', 'Kin_scal']
custom R_Ferro ['SpinT_eq']

custom R_AFM ['SpinT_eq']
custom SpinZ_pipi ['SpinZ_eq']
custom SpinXY_pipi ['SpinXY_eq']

custom SpinXYZ_pipi ['SpinT_eq']
Scalar observables:
Ener_scal

Kin_scal

Part_scal

Pot_scal

Histogram observables:
Equal time observables:
Den_eq

Green_eq

SpinT_eq

SpinXY_eq

SpinZ_eq

Time displaced observables:
Den_tau

Green_tau

SpinT_tau

SpinXY_tau

SpinZ_tau
./ALF_data/Hubbard

No orbital locations saved.

Analyze with symmetrization and load results.

analysis (directory, symmetry=sym_c4, custom_obs=custom_obs, always=True)
res_sym = load_res ([directory]) .iloc[0]

Analyzing ./ALF_data/Hubbard
/home/jonas/Programs/pyALF/doc/source/usage
Custom observables:

custom E_squared ['Ener_scal']
custom E_pot_kin ['Pot_scal', 'Kin_scal']
custom R_Ferro ['SpinT_eq']

custom R_AFM ['SpinT_eq']

custom SpinZ_pipi ['SpinZ_eqg']
custom SpinXY_pipi ['SpinXY_eq']
custom SpinXYZ_pipi ['SpinT_eq']
Scalar observables:

Ener_scal

Kin_scal

Part_scal

Pot_scal

Histogram observables:

Equal time observables:

Den_eq

Green_eq

SpinT_eq

SpinXY_eq

SpinZ_eq
Time displaced observables:
(continues on next page)

2.3. Postprocessing 43

pYALF Documentation

Den_tau
Green_tau
SpinT_tau
SpinXY_tau
SpinZ_tau

./ALF_data/Hubbard
No orbital locations saved.

(continued from previous page)

We now compare results for the points (7, 7) + b, and (7,) + by, where b; = (27/L,0) and b, = (0,27/L) are

the primitive vectors of the Bravais lattice in k-space, with and without symmetrization.

latt = Lattice(res_nosym['SpinT_eqg_lattice'])
n = latt.k_to_n((np.pi, np.pi))

nl = latt.nnlistk([n, -1, 0]

n2 = latt.nnlistk[n, 0, -1]

print (f"""Spin-Spin correlations:

Without symmetrization:

At k={latt.k[n1] res_nosym.SpinT_egK_sum[nl] :.2f
serr[nl]:.2f

At k={latt.k[n2] res_nosym.SpinT_egK_sum([n2] :.2f
serr[n2]:.2f

With symmetrization:

At k={latt.k[nl] res_sym.SpinT_egK_sum[nl] :.2f

serr[nl] :.2f
At k={latt.k[n2]
serr[n2]:.2f

nn n)

res_sym.SpinT_egK_sum[n2] :.2f

Spin-Spin correlations:
Without symmetrization:

At k=[2.0943951

3.14159265]: 1.07 +- 0.04

At k=[3.14159265 2.0943951]1: 1.14 +- 0.07

With symmetrization:

At k=[2.0943951

3.14159265]: 1.10 +- 0.05

At k=[3.14159265 2.0943951]: 1.10 +- 0.05

latt.plot_k (res_nosym.SpinT_egK_sum)
plt.plot (*latt.k[nl], 'or'")
plt.plot (*latt.k[n2], 'or'")

[<matplotlib.lines.Line2D at 0x7£988d137b10>]

res_nosym.SpinT_egK_sum_

res_nosym.SpinT_egK_sum_

res_sym.SpinT_egK_sum_

res_sym.SpinT_egK_sum_

44

Chapter 2. Usage

pYALF Documentation

4F T T T]
4
2L o
3
1k .
=,
-~ 2
0k .
1
_1 - |
_2 - |
= i I 1 I
-2 0 2 4
Kx
latt.plot_k (res_sym.SpinT_egK_sum)
plt.plot (*latt.k[nl], 'or'")
plt.plot (*latt.k[n2], 'or'")
[<matplotlib.lines.Line2D at 0x7£988cf12990>]
4F T T T]
4
2L o
3
1k .
=,
-~ 2
0k .
1
_1 - |
_2 - |
= i I 1 I
-2 0 2 4
Kx

2.4 Command line tools

In addition to the Python objects presented in previous sections, pyALF offers a set of scripts that make it easy to
leverage pyALF from a Unix shell (e.g. Bash or zsh). They are located in the folder py_alf/cl1i, but installation
via pip adds entry points to conveniently use them from the Unix shell without further configuration (notably, by
trimming the trailing . py).

The list of all command line tools can be found in the reference. Out of those, this section will only introduce two
more elaborate scripts, namely alf runand alf_postprocess.

When starting a code line in Jupyter with an exclamation mark, the line will be interpreted as a shell command. We
will use this feature to demonstrate the shell tools.

2.4. Command line tools 45

pYALF Documentation

2.4.1 alf_run

The script alf_run.py enables most of the features displayed in Section 2.2 to be used directly from the shell.
The help text lists all possible arguments:

lalf_run -h

usage: alf_run [-h] [--alfdir ALFDIR] [--sims_file SIMS_FILE]
[--branch BRANCH] [--machine MACHINE] [--mpi] [--n_mpi N_MPTI]
[-—mpiexec MPIEXEC] [-—-mpiexec_args MPIEXEC_ARGS]
[

——-do_analysis]

Helper script for compiling and running ALF.

options:
-h, —--help show this help message and exit
—-—alfdir ALFDIR Path to ALF directory. (default: os.getenv('ALF_DIR',

', /ALF'")

——sims_file SIMS_FILE
File defining simulations parameters. Each line starts
with the Hamiltonian name and a comma, after wich
follows a dict in JSON format for the parameters. A
line that says stop can be used to interrupt.

(default: './Sims')
—-branch BRANCH Git branch to checkout.
——machine MACHINE Machine configuration (default: 'GNU')
—--mpi mpi run
--n_mpi N_MPI number of mpi processes (default: 4)
—--mpiexec MPIEXEC Command used for starting a MPI run (default:
'mpiexec')

--mpiexec_args MPIEXEC_ARGS
Additional arguments to MPI executable.
—-—-do_analysis, —-—-ana Run default analysis after each simulation.

For example, to run a series of four different simulations of the Kondo model, the first step is to create a file specifying
the parameters, with one line per simulation:

lcat Sims_Kondo

Kondo, {"Li1": 4, "L2": 4, "Ham_JK": 0.5}
Kondo, {"L1": 4, "L2": 4, "Ham JK": 1.0}
Kondo, {"Li1": 4, "L2": 4, "Ham_JK": 1.5}
Kondo, {"Li1": 4, "L2": 4, "Ham_JK": 2.0}

Then, one can execute alf_run.py with options as desired, the script automatically recompiles ALF for each
simulation. For understanding some of the options, Section 2.2 might help.

'lalf_run --sims_file ./Sims_Kondo --mpi —--n_mpi 4

2.4.2 alf_postprocess

The script alf_postprocess.py enables most of the features discussed in Section 2.3, except for plotting
capabilities, to be used directly from the shell. The help text lists all possible arguments:

lalf postprocess -h

usage: alf_postprocess [-h] [--check_warmup] [--check_rebin]
[-1 CHECK_LIST [CHECK_LIST ...]] [-—-do_analysis]
[-—always] [—-—gather] [—-—no_tau]

(continues on next page)

46 Chapter 2. Usage

pYALF Documentation

(continued from previous page)

[-—custom_obs CUSTOM_OBS] [--symmetry SYMMETRY]
[directories ...]

Script for postprocessing Monte Carlo bins.

positional arguments:
directories Directories to analyze. If empty, analyzes all
directories containing file "data.h5" it can find,
starting from the current working directory.

options:
-h, —--help show this help message and exit
——check_warmup, --warmup
Check warmup. Opens new window.
——check_rebin, --rebin

Check rebinning for controlling autocorrelation. Opens
new window.

-1, —--check_list CHECK_LIST [CHECK_LIST ...]
List of observables to check for warmup and rebinning.

--do_analysis, —--ana Do analysis.

-—always Do not skip analysis if parameters and bins are older
than results.

--gather Gather all analysis results in one file named
"gathered.pkl", representing a pickled pandas
DataFrame.

--no_tau Skip time displaced correlations.

——custom_obs CUSTOM_OBS
File that defines custom observables. This file has to
define the object custom_obs, needed by
py_alf.analysis. (default: os.getenv ("ALF_CUSTOM_OBS",
None))

—-—-symmetry, —--sym SYMMETRY
File that defines lattice symmetries. This file has to
define the object symmetry, needed by py_alf.analysis.
(default: None))

To use the symmetrization feature, one needs a file defining the object symmetry, similar to the already used file
custom_obs.py defining custom_obs.

lcat sym_céd.py

"""Define C_4 symmetry (=fourfold rotation) for pyALF analysis."""
from math import pi

Define list of transformations (Lattice, i) —-> new_i
Default analysis will average over all listed elements
def sym_c4_0(latt, i): return i

def sym_c4_1(latt, i return latt.rotate(i, pi*0.5)

()
def sym_c4_2(latt, 1i): return latt.rotate(i, pi)
def sym_c4_3(latt, 1i) return latt.rotate(i, pi*1.5)
symmetry = [sym_c4_0, sym_c4_1, sym_c4_2, sym_c4_3]

To analyze the results from the Kondo model and gather them all in one file gathered.pkl, we execute the
following command.

'alf _postprocess ——custom_obs custom_obs.py ——symmetry sym_c4.py ——ana ——gather.
<ALF_data/Kondo*

The data from gathered. pkl can, for example, be read and plotted like this:

2.4. Command line tools 47

pYALF Documentation

Import modules
import matplotlib.pyplot as plt
import pandas as pd

Load pickled DataFrame
res = pd.read_pickle('gathered.pkl')

Create figure with axis labels
fig, ax = plt.subplots|()

ax.set_xlabel (r'Kondo interaction $J_KS'

ax.set_ylabel (r'Energy')

Plot data
ax.errorbar (res.ham_jk, res.Ener_scal0,

)

res.Ener_scalO_err);

—26
_28 -
>
2
o
=
o
_3(] -
—32

T
0.6 0.8 1.0

Kondo interaction Ji

T
1.2

T
1.4

1.6

1.8 2.0

48

Chapter 2. Usage

CHAPTER
THREE

REFERENCE

This is a reference of pyALF’s features, most of the information in this section, except for the ones on the Command
line tools, are also accessible through the Python builtin he 1p ().

Table of contents
e Class ALF _source
o Class Simulation
o High-level analysis functions
e Class Lattice
o Low-level analysis functions
o Utility functions

o Command line tools

3.1 Class ALF_source

class py_alf.ALF_source (alf_dir=None, branch=None, url="https://github.com/ALF-QMC/ALF git")
Objet representing ALF source code.

Parameters

alf_dir
[path-like object, default=o0s.getenv(‘ALF_DIR’, ‘./ALF’)] Directory containing the ALF
source code. If the directory does not exist, the source code will be fetched from a server.
Defaults to environment variable $ALF_DIR if defined, otherwise to ‘./ALF’.

branch
[str, optional] If specified, this will be checked out by git.

url
[str, default="https://github.com/ALF-QMC/ALF.git'] Address from where to clone ALF
if alf_dir does not exist.
get_default_params (ham_name, include_generic=True)

Return full set of default parameters for hamiltonian.
get_ham_names ()
Return list of Hamiltonians.

get_params_names (ham_name, include_generic=True)

Return list of parameter names for hamiltonian, transformed in all uppercase.

49

https://docs.python.org/3/library/functions.html#help
https://github.com/ALF-QMC/ALF.git

pYALF Documentation

3.2 Class Simulation

class py_alf.Simulation (alf_src, ham_name, sim_dict, **kwargs)

Object corresponding to an ALF simulation.
Parameters

alf _src
[ALF_source] Objet representing ALF source code.

ham_name
[str] Name of the Hamiltonian.

sim_dict
[dict or list of dicts] Dictionary specfying parameters owerwriting defaults. Can be a list
of dictionaries to enable parallel tempering.

sim_dir
[path-like object, optional] Directory in which the Monte Carlo will be run. If not speci-
fied, sim_dir is generated from sim_dict.

sim_root
[path-like object, default="ALF_data”] Directory to prepend to sim_dir.

mpi
[bool, default=False] Employ MPI.

parallel_params
[bool, default=False] Run independent parameter sets in parallel. Based on parallel tem-
pering, but without exchange steps.

n_mpi
[int, default=2] Number of MPI processes if mpi is true.

n_omp
[int, default=1] Number of OpenMP threads per process.

mpiexec
[str, default="mpiexec”] Command used for starting a MPI run. This may have to be
adapted to fit with the MPI library used at compilation. Possible candidates include ‘or-
terun’, ‘mpiexec.hydra’.

mpiexec_args
[list of str, optional] Additional arguments to MPI executable. E.g. the flag ——hostfile
/path/to/fileis specified by mpiexec_args=['—--hostfile', '/path/
to/file']

machine
[{“GNU”, “INTEL”, “PGI”, “Other machines defined in configure.sh”}] Compiler and en-
vironment.

stab
[str, optional] Stabilization strategy employed by ALF. Possible values: “STABI”,
“STAB2”, “STAB3”, “LOG”. Not case sensitive.

devel
[bool, default=False] Compile with additional flags for development and debugging.

hdf5
[bool, default=True] Whether to compile ALF with HDFS5. Full postprocessing support
only exists with HDFS5.

analysis (python_version=True, **kwargs)

Perform default analysis on Monte Carlo data.

Calls py_alf.analysis (), if run with python_version=True.

50 Chapter 3. Reference

pYALF Documentation

Parameters

python_version
[bool, default=True] Use Python version of analysis. The non-Python version is legacy
and does not support all postprocessing features.

*rkwargs
[dict, optional] Extra arguments for py_alf.analysis (), if run with
python_version=True.

check_rebin (names, gui="tk', **kwargs)

Plot error vs n_rebin to control autocorrelation.
Parameters

names
[list of str] Names of observables to check.

gui
[{‘tk’, ipy’}] Whether to use Tkinter or Jupyter Widget for GUI. default: ‘tk’

**kwargs
[dict, optional] Extra arguments for py_alf.check_rebin_tk () or py_alf.
check_rebin ipy ().

check_warmup (names, gui="tk’, **kwargs)

Plot bins to determine n_skip.
Parameters

names
[list of str] Names of observables to check.

gui
[{‘tk’, “ipy’}] Whether to use Tkinter or Jupyter Widget for GUI. default: ‘tk’

**kwargs
[dict, optional] Extra arguments for py_alf.check_warmup_tk () orpy_alf.
check_warmup_ipy ().

compile (verbosity=0)
Compile ALF.

Parameters

verbosity
[int, default=0] O: Don’t echo make reciepes. 1: Echo make reciepes. else: Print make
tracing information.

get_directories ()
Return list of directories connected to this simulation.

get_obs (python_version=True)
Return Pandas DataFrame containing anaysis results from observables.

The non-python version is legacy and does not support all postprocessing features, e.g. time-displaced
observables.

print_info_file ()
Print info file(s) that get generated by ALF.

run (copy_bin=False, only_prep=False, bin_in_sim_dir=False)

Prepare simulation directory and run ALF.
Parameters

copy_bin
[bool, default=False] Copy ALF binary into simulation directory.

3.2. Class Simulation 51

pYALF Documentation

only_prep
[bool, default=False] Do not run ALF, only prepare simulation directory.

bin_in_sim_dir
[bool, default=False] Assume that the ALF binary is already present in simultation di-

rectory and use this.

3.3 High-level analysis functions

py_alf.analysis.analysis (directory, symmetry=None, custom_obs=None, do_tau=True, always=False)

Perform analysis in the given directory.

Results are written to the pickled dictionary res.pkl and in plain text in the folder res/.

Parameters

directory
[path-like object] Directory containing Monte Carlo bins.

symmetry
[list of functions, optional] List of functions reppresenting symmetry operations on lattice,

including unity. It is used to symmetrize lattice-type observables.

custom_obs
[dict, default=None] Defines additional observables derived from existing observables.

The key of each entry is the observable name and the value is a dictionary with the format:

{'needs': some_list,
'kwargs': some_dict,
'function': some_function, }

some_list contains observable names to be read by py_alf.ana.ReadObs. Jackknife
bins and kwargs from some_dict are handed to some_ function with a separate call for each

bin.

do_tau
[bool, default=True] Analyze time-displaced correlation functions. Setting this to False

speeds up analysis and makes result files much smaller.

always
[bool, default=False] Do not skip if parameters and bins are older than results.

py_alf.check_warmup (*args, gui="tk', **kwargs)
Plot bins to determine n_skip.

Calls either py_alf.check_warmup_tk () orpy_alf.check_warmup_ipy ().

Parameters

*args
gui
[{“tk”’ “ipy” }]

**kwargs
py_alf.check_warmup_tk.check_warmup_tk (directories, names, custom_obs=None)
Plot bins to determine n_skip. Opens a new window.
Parameters

directories
[list of path-like objects] Directories with bins to check.

52 Chapter 3. Reference

pYALF Documentation

names
[list of str] Names of observables to check.

custom_obs

[dict, default=None] Defines additional observables derived from existing observables.
Seepy_alf.analysis ().

py_alf.check_warmup_ipy.check_warmup_ipy (directories, names, custom_obs=None, ncols=3)
Plot bins to determine n_skip in a Jupyter Widget.

Parameters

directories
[list of path-like objects] Directories with bins to check.

names
[list of str] Names of observables to check.

custom_obs

[dict, default=None] Defines additional observables derived from existing observables.
See py_alf.analysis ().

Returns

Jupyter Widget
A graphical user interface based on ipywidgets

py_alf.check_rebin (*args, gui="tk’', **kwargs)
Plot error vs n_rebin in a Jupyter Widget.
Calls either py_alf.check_rebin_tk () orpy_alf.check_rebin_ipy ().
Parameters
*args
gui
[(“tk”, “ipy”)]
**kwargs
py_alf.check_rebin_tk.check_rebin_tk (directories, names, Nmax0=100, custom_obs=None)
Plot error vs n_rebin. Opens a new window.

Parameters

directories
[list of path-like objects] Directories with bins to check.

names
[list of str] Names of observables to check.
Nmax(
[int, default=100] Biggest n_rebin to consider. The default is 100.
custom_obs
[dict, default=None] Defines additional observables derived from existing observables.
See py_alf.analysis ().

py_alf.check_rebin_ipy.check_rebin_ipy (directories, names, custom_obs=None, Nmax0=100,
ncols=3)

Plot error vs n_rebin in a Jupyter Widget.
Parameters

directories
[list of path-like objects] Directories with bins to check.

names
[list of str] Names of observables to check.

3.3. High-level analysis functions 53

pYALF Documentation

Nmax0
[int, default=100] Biggest n_rebin to consider. The default is 100.

custom_obs
[dict, default=None] Defines additional observables derived from existing observables.

Seepy_alf.analysis ().
Returns

Jupyter Widget
A graphical user interface based on ipywidgets

3.4 Class Lattice

class py_alf.Lattice (*args, force_python_init=False)
Finite size Bravais lattice object, mirroring ALF’s Lattice type.

Parameters

*args
[dict, tuple, or list] if dict: {'L1: L1, ‘L2 L2, ‘al’: al, ‘a2’: a2}.

if tuple or list: [L1, L2, al, a2].
L1, L2: 2d vectors defining periodic boundary conditions.
al, a2: 2d primitive vectors.

force_python_init
[bool, default=False] Force the usage of Python version of the initialization. Default be-
havior is to first try compiled Fortran and fall back to Python if that fails.

Attributes
L1,12
[arrays of floats] 2d vectors defining periodic boundary conditions in real space.
al, a2
[arrays of floats] 2d primitive vectors in real space.
BZ71, BZ2
[arrays of floats] 2d vectors defining periodic boundary conditions in k space.
b1, b2
[arrays of floats] 2d primitive vectors in k space.
N
[int] Number of unit cells
r
[array of floats, shape=(N, 2)] Real-space coordinates.
k
[array of floats, shape=(N, 2)] K-space coordinates.
b1_perp
[array, shape=(2,)]
b2_perp
[array, shape=(2,)]
L

[int]

54 Chapter 3. Reference

pYALF Documentation

listr
[array of ints, shape=(N, 2)] r[i] = listr[i, O]*al + listr[i, 1]*a2

listk
[array of ints, shape=(N, 2)] k[i] = listk[i, 0] *al + listk[i, 1]*b2

invlistr
[array of ints, shape=(2*L+1, 2*L+1)]

invlistk
[array of ints, shape=(2*L+1, 2*L+1)]

nnlistr
[array of ints, shape=(N, 3, 3)]

nnlistk
[array of ints, shape=(N, 3, 3)]

imj
[array of ints, shape=(N, N)]

fourier_K_to_R (X)

Fourier transform from k to r space.

Last index of input has to run over all lattice points in k space.

Last index of output runs over all lattice points in r space.
fourier_ R_to_K (X)

Fourier transform from r to k space.

Last index of input has to run over all lattice points in r space.

Last index of output runs over all lattice points in k space.
k_to_n (k)

Map vector in k space to integer running over all lattice points.
periodic_boundary k (k)

Apply periodic boundary conditions on vector in k space.
periodic_boundary_r (r)

Apply periodic boundary conditions on vector in r space.
plot_k (data)

Plot data in k space.

Parameters

data
[iterable] Index corresponds to coordinates.

plot_r (data)
Plot data in r space.

Parameters

data
[iterable] Index corresponds to coordinates.

r_to_n(r)

Map vector in r space to integer running over all lattice points.

rotate (n, theta)

Rotate vector in k space.

Parameters

3.4.

Class Lattice

55

pYALF Documentation

n
[int] Index corresponding to input vector.

theta
[float] Angle of rotation.

Returns
int
Index corresponding to output vector.

3.5 Low-level analysis functions

Analysis routines.
class py_alf.ana.Parameters (directory, obs_name=None)
Object representing the “parameters” file.
Parameters

directory
[path-like object] Directory of “parameters” file.

obs_name

[str, optional] Observable name. If this is set, the object tries to get a parameters not from
the namelist ‘var_errors’, but from a namelist called obs_name, while ‘var_errors’ is the
fallback options. Parameters will be written to namelist obs_name.

N _min ()
Get minimal number of bins, given the parameters in this object.
N_rebin ()
Get N_rebin.
N_skip ()
Get N_skip.
set_N_rebin (parameter)
Update N_rebin.
set_N_skip (parameter)
Update N_skip.
write_nml ()

Write namelist to file. Preseves comments.

class py_alf.ana.ReadObs (directory, obs_name, bare_bins=False, substract_back=True)

Read, skip, rebin and jackknife scalar-type bins.

Bins get skipped and rebinned according to N_skip an N_rebin retrieved through Parameters, then jack-
knife resampling is applied. Saves jackknife bins.

Cf. read_scal (), read_latt (), read_hist ().
Parameters

directory
[path-like object] Directory containing the observable.

obs_name
[str] Name of observable.

56 Chapter 3. Reference

pYALF Documentation

bare_bins
[bool, default=False] Do not perform skipping, rebinning, or jackknife resampling.

substract_back
[bool, default=True] Substract background. Applies to correlation functions.

all ()

Return all bins.

jack (N_rebin)

Return jackknife bins. Object has to be created with bare_bins=True.
Parameters

N_rebin
[int] Overwrite N_rebin from parameters.

slice (n)
Return n-th bin.

py_alf.ana.ana_eq (directory, obs_name, sym=None)

Analyze given equal-time correlators.
If sym is given, it symmetrizes the bins prior to calculating the error. Cf. symmetrize ().

py_alf.ana.ana_hist (directory, obs_name)

Analyze given histogram observables.

py_alf.ana.ana_scal (directory, obs_name)

Analyze given scalar observables.
Parameters

directory
[path-like object] Directory containing the observable.

obs_name
[str] Name of the observable.

py_alf.ana.ana_tau (directory, obs_name, sym=None)

Analyze given time-displaced correlators.
If sym is given, it symmetrizes the bins prior to calculating the error. Cf. symmetrize ().

py_alf.ana.error (jacks, inag=False)

Calculate expectation values and errors of given jackknife bins.
Parameters

jacks
[array-like object] Jackknife bins.

imag
[bool, default=False] Output with imaginary part.

Returns

tuple of numpy arrays
(expectation values, errors).

py_alf.ana.jack (X, par, N_skip=None, N_rebin=None)
Create jackknife bins out of input bins after skipping and rebinning.
Parameters

X
[array-like object] Input bins. Bins run over first index.

3.5. Low-level analysis functions 57

pYALF Documentation

par
[Parameters] Parameters object.

N_skip
[int, default=par.N_skip()] Number of bins to skip.

N_rebin
[int, default=par.N_rebin()] Number of bins to recombine into one.

Returns

numpy array
Jackknife bins after skipping and rebinning.

py_alf.ana.load_res (directories)

Read analysis results from multiple simulations.

Read from pickled dictionaries ‘res.pkl’ and return everything in a single pandas DataFrame with one row per
simulation.

Parameters

directories
[list of path-like objects] Directories containing analyzed simulation results.

Returns

df
[pandas.DataFrame] Contains analysis results and Hamiltonian parameters. One row per
simulation.

py_alf.ana.read_hist (directory, obs_name, bare_bins=False)

Read, skip, rebin and jackknife histogram-type bins.

Bins get skipped and rebinned according to N_skip an N_rebin retrieved through Parameters, then jack-
knife resampling is applied.

Parameters

directory
[path-like object] Directory containing the observable.

obs_name
[str] Name of the observable.

bare_bins
[bool, default=False] Do not perform skipping, rebinning, or jackknife resampling.

Returns

array
Observables. shape: (N_bins, N_classes).

array
Sign. shape: (N_bins,).

array
Proportion of observations above upper bound. shape: (N_bins,).

array
Proportion of observations below lower bound. shape: (N_bins,).

N_classes
[int] Number of classes between upper and lower bound.

upper
[float] Upper bound.

lower
[float] Lower bound.

58 Chapter 3. Reference

pYALF Documentation

py_alf.ana.read_latt (directory, obs_name, bare_bins=False, substract_back=True)

Read, skip, rebin and jackknife lattice-type bins (_eq and _tau).

Bins get skipped and rebinned according to N_skip an N_rebin retrieved through Parameters, then jack-
knife resampling is applied.

Parameters

directory
[path-like object] Directory containing the observable.

obs_name
[str] Name of the observable.

bare_bins
[bool, default=False] Do not perform skipping, rebinning, or jackknife resampling.

substract_back
[bool, default=True] Substract background from correlation functions.

Returns

array
Observables. shape: (N_bins, N_orb, N_orb, N_tau, latt.N).

array
Background. shape: (N_bins, N_orb)

array
Sign. shape: (N_bins,).

N_orb
[int] Number of orbitals.

N_tau
[int] Number of imaginary time steps.

dtau
[float] Imaginary time step length.

latt
[Lattice] See py_alf.Lattice.

py_alf.ana.read_scal (directory, obs_name, bare_bins=False)

Read, skip, rebin and jackknife scalar-type bins.

Bins get skipped and rebinned according to N_skip an N_rebin retrieved through Parameters, then jack-
knife resampling is applied.

Parameters

directory
[path-like object] Directory containing the observable.

obs_name
[str] Name of the observable.

bare_bins
[bool, default=False] Do not perform skipping, rebinning, or jackknife resampling.

Returns

array
Observables. shape: (N_bins, N_obs).

array
Sign. shape: (N_bins,).

N_obs
[int] Number of observables.

3.5. Low-level analysis functions 59

pYALF Documentation

py_alf.ana.rebin (X, N_rebin)

Combine each N_rebin bins into one bin.

If the number of bins (=NO) is not an integer multiple of N_rebin, the last NO modulo N_rebin bins are

discarded.

py_alf.ana.symmetrize (latt, syms, dat)

Symmetrize a dataset.
Parameters

latt
[Lattice] See py_alf.Lattice.

syms

[list] List of symmetry operations, including the identity of the form sym(latt, i) ->

1_tranformed

dat

[array-like object] Data to symmetrize. The symmetrization is with respect to the last

index of dat.
Returns

dat_sym
[numpy array] Symmetrized data.

3.6 Utility functions

Utility functions for handling ALF HDFS files.

py_alf.utils.bin_count (filename)
Count number of bins in the given ALF HDFS file.

Assumes all observables have the same number of bins.
Parameters

filename: str
Name of HDFS file.

py_alf.utils.del_bins (filename, NO, N)
Delete N bins in all observables of the specified HDF5-file.

Parameters

filename: str
Name of HDFS file.

NO: int
Number of first NO bins to keep.

N: int
Number of bins to remove after first NO bins.

py_alf.utils.find_sim_dirs (root_in="")

Find directories containing a file named ‘data.h5’.
Parameters

root_in
[path-like object, default=""] Root directory from where to start searching.

Returns

60 Chapter 3.

Reference

pYALF Documentation

list of directory names.

py_alf.utils.show_obs (filename)
Show observables and their number of bins in the given ALF HDFS file.

Parameters

filename: str
Name of HDFS file.

3.7 Command line tools

A number of executable python scripts in the folder py_alf/cli. For productive work, it may be suitable to add
this folder to the $PATH environment variable.

3.7.1 minimal_ALF_run

Extensively commented example script showing the minimal steps for creating and running an ALF simulation in

pyALF.

3.7.2 alf_run

Helper script for compiling and running ALF.

usage: alf_run [-

[
[
[
[

h]

[-—alfdir ALFDIR] [-—-sims_file SIMS_FILE]
—branch BRANCH] [--machine MACHINE] [--—mpi] [--n_mpi N_MPT]
——mpiexec MPIEXEC] [--mpiexec_args MPIEXEC_ARGS]

——do_analysis]

3.7.2.1 Named Arguments

--alfdir

--sims_file

--branch
--machine
--mpi
--n_mpi
--mpiexec

--mpiexec_args

Path to ALF directory. (default: os.getenv(‘ALF_DIR’, ‘./ALF’)

File defining simulations parameters. Each line starts with the Hamiltonian
name and a comma, after wich follows a dict in JSON format for the parameters.
A line that says stop can be used to interrupt. (default: ‘./Sims’)

Git branch to checkout.

Machine configuration (default: ‘GNU”)

mpi run

number of mpi processes (default: 4)

Command used for starting a MPI run (default: ‘mpiexec’)

Additional arguments to MPI executable.

--do_analysis, --ana Run default analysis after each simulation.

3.7. Command line tools

61

pYALF Documentation

3.7.3 alf_postprocess

Script for postprocessing Monte Carlo bins.

usage: alf_postprocess [-h] [-—-check_warmup] [-—-check_rebin]
[-1 CHECK_LIST [CHECK_LIST ...]] [-—do_analysis]
[-—always] [-—gather] [-—no_tau]
[-—custom_obs CUSTOM_OBS] [--symmetry SYMMETRY]
[directories ...]

3.7.3.1 Positional Arguments

directories Directories to analyze. If empty, analyzes all directories containing file
“data.h5” it can find, starting from the current working directory.

3.7.3.2 Named Arguments

--check_warmup, --warmup Check warmup. Opens new window.
Default: False

--check_rebin, --rebin Check rebinning for controlling autocorrelation. Opens new window.
Default: False

-1, --check_list List of observables to check for warmup and rebinning.

--do_analysis, --ana Do analysis.
Default: False

--always Do not skip analysis if parameters and bins are older than results.
Default: False

--gather Gather all analysis results in one file named “gathered.pkl”, representing a pick-
led pandas DataFrame.

Default: False
--no_tau Skip time displaced correlations.
Default: False

--custom_obs File that defines custom observables. This file has to define
the object custom_obs, needed by py_alf.analysis. (default:
os.getenv(“ALF_CUSTOM_OBS”, None))

--symmetry, --sym File that defines lattice symmetries. This file has to define the object symmetry,
needed by py_alf.analysis. (default: None))

62 Chapter 3. Reference

pYALF Documentation

3.7.4 alf_bin_count

Count number of bins in ALF HDFS file(s), assuming all observables have the same number of bins.

[usage: alf _bin _count [-h] [filenames ...]

3.7.4.1 Positional Arguments

filenames Name of HDFS5 files. If no arguments are supplied, all files named “data.h5” in
the current working directory and below are taken.

3.7.5 alf_show_obs

Show observables and their number of bins in ALF HDFS5 file(s).

[usage: alf_show_obs [-h] [filenames ...]

3.7.5.1 Positional Arguments

filenames Name of HDFS5 files. If no arguments are supplied, all files named “data.h5” in
the current working directory and below are taken.

3.7.6 alf_del bins

Delete N bins in all observables of the specified HDF5-file.

[usage: alf_del _bins [-h] ——N N [--NO NO] filename

3.7.6.1 Positional Arguments

filename Name of HDFS file.

3.7.6.2 Named Arguments

--N Number of bins to remove after first NO bins.

--NO Number of first NO bins to keep. (default=0)

3.7. Command line tools

63

pYALF Documentation

3.7.7 alf_test_branch

Script for testing two branches against one another.The test succeeds if analysis results for both branches are exactly
the same.

usage: alf_test_branch [-h] [--sim_pars SIM_PARS] [-—-alfdir ALFDIR]
[-~branch_R BRANCH_R] [-—-branch_T BRANCH_T]
[-—-machine MACHINE] [--devel] [-—mpi] [--n_mpi N_MPTI]
[-—mpiexec MPIEXEC] [-—mpiexec_args MPIEXEC_ARGS]
[-—no_prep] [-—no_sim] [--no_analyze]

3.7.7.1 Named Arguments

--sim_pars JSON file containing parameters for testing. (default: ‘./test_pars.json’)
--alfdir Path to ALF directory. (default: os.getenv(‘ALF_DIR’, *./ALF))
--branch_R Reference branch. (default: master)

--branch_T Branch to test. (default: master)

--machine Machine configuration. (default: “GNU”)

--devel Compile with additional flags for development and debugging.

--mpi Do MPI run(s). (default: False)

--n_mpi Number of MPI processes. (default: 4)

--mpiexec Command used for starting an MPI run. (default: “mpiexec”)

--mpiexec_args

Additional arguments to MPI executable.

--no_prep Do not prepare runs, i.e. Compiling and creating directories.
--no_sim Do not run ALF binary.
--no_analyze Do not analyze and compare results.

64

Chapter 3. Reference

CHAPTER
FOUR

ACKNOWLEDGMENTS

I would like to acknowledge Jefferson Stafusa Portela for proofreading this documentation.

The development of pyALF has been indirectly supported by funding for research projects from the Deutsche
Forschungsgemeinschaft through the SFB1170 and FOR1807 and by direct funding from the Unitary Fund.

Furthermore, I would like to acknowledge the Gauss Centre for Supercomputing e.V. for providing computing time
for research projects on the GCS Supercomputer SUPERMUC-NG at Leibniz Supercomputing Centre, which also
contributed to the development of pyALF.

65

https://unitary.fund/

pYALF Documentation

66

Chapter 4. Acknowledgments

(1]

(2]

[6]

BIBLIOGRAPHY

Martin Bercx, Florian Goth, Johannes S. Hofmann, and Fakher F. Assaad. The ALF (Algorithms for Lattice
Fermions) project release 1.0. Documentation for the auxiliary field quantum Monte Carlo code. SciPost Phys.,
3:013, 2017. URL: https://scipost.org/10.21468/SciPostPhys.3.2.013, doi:10.21468/SciPostPhys.3.2.013.

ALF Collaboration, F. F. Assaad, M. Bercx, F. Goth, A. Gotz, J. S. Hofmann, E. Huffman, Z. Liu, F. Parisen
Toldin, J. S. E. Portela, and J. Schwab. The ALF (Algorithms for Lattice Fermions) project release 2.0. Docu-
mentation for the auxiliary-field quantum Monte Carlo code. arXiv:2012.11914, 2020. URL: https://arxiv.org/
abs/2012.11914.

Michelle Cotton, Lars Eggert, Dr. Joseph D. Touch, Magnus Westerlund, and Stuart Cheshire. Internet As-
signed Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport
Protocol Port Number Registry. RFC 6335, August 2011. URL: https://www.rfc-editor.org/info/rfc6335,
doi:10.17487/RFC6335.

C. J. Geyer. Markov chain monte carlo maximum likelihood. In Computing Science and Statistics: Proceedings
of the 23rd Symposium on the Interface, 156-163. New York, 1991. American Statistical Association. URL:
https://hdl.handle.net/11299/58440.

Koji Hukushima and Koji Nemoto. Exchange monte carlo method and application to spin glass simulations.
Journal of the Physical Society of Japan, 65(6):1604-1608, 1996. URL: http://dx.doi.org/10.1143/JPSJ.65.1604,
arXiv:http://dx.doi.org/10.1143/JPSJ.65.1604, doi:10.1143/JPSJ.65.1604.

B. Efron and C. Stein. The Jackknife Estimate of Variance. The Annals of Statistics, 9(3):586 — 596, 1981. URL.:
https://doi.org/10.1214/a0s/1176345462, doi:10.1214/a0s/1176345462.

67

https://scipost.org/10.21468/SciPostPhys.3.2.013
https://doi.org/10.21468/SciPostPhys.3.2.013
https://arxiv.org/abs/2012.11914
https://arxiv.org/abs/2012.11914
https://www.rfc-editor.org/info/rfc6335
https://doi.org/10.17487/RFC6335
https://hdl.handle.net/11299/58440
http://dx.doi.org/10.1143/JPSJ.65.1604
https://arxiv.org/abs/http://dx.doi.org/10.1143/JPSJ.65.1604
https://doi.org/10.1143/JPSJ.65.1604
https://doi.org/10.1214/aos/1176345462
https://doi.org/10.1214/aos/1176345462

pYALF Documentation

68

Bibliography

A

ALF_source (class in py_alf), 49

all () (py_alf.ana.ReadObs method), 57
ana_eq () (in module py_alf.ana), 57
ana_hist () (in module py_alf.ana), 57
ana_scal () (in module py_alf.ana), 57
ana_tau () (in module py_alf.ana), 57
analysis () (in module py_alf.analysis), 52
analysis () (py_alf.Simulation method), 50

B

bin_count () (in module py_alf.utils), 60

C

check_rebin () (in module py_alf), 53
check_rebin () (py_alf.Simulation method), 51

check_rebin_ipy () (in module
py_alf.check_rebin_ipy), 53
check_rebin_tk () (in module

py_alf.check_rebin_tk), 53
check_warmup () (in module py_alf), 52
check_warmup () (py_alf.Simulation method), 51

check_warmup_ipy () (in module
py_alf.check_warmup_ipy), 53
check_warmup_tk () (in module

py_alf.check_warmup_tk), 52
compile () (py_alf.Simulation method), 51

D

del_bins () (in module py_alf.utils), 60

E

error () (in module py_alf.ana), 57

F

find_sim_dirs () (in module py_alf.utils), 60
fourier_K_to_R() (py_alf Lattice method), 55
fourier_R_to_K () (py_alfLattice method), 55

G

get_default_params ()
method), 49

get_directories()
51

get_ham_names () (py_alfALF_source method), 49

(py_alf.ALF_source

(py_alf.Simulation method),

INDEX

get_obs () (py_alf.Simulation method), 51
get_params_names () (py_alf.ALF _source
method), 49

J

jack () (in module py_alf.ana), 57
jack () (py_alf.ana.ReadObs method), 57

K

k_to_n () (py_alf Lattice method), 55

L

Lattice (class in py_alf), 54
load_res () (in module py_alf.ana), 58

M

module
py_alf.ana, 56
py_alf.utils, 60

N

N_min () (py_alf.ana.Parameters method), 56
N_rebin () (py_alf.ana.Parameters method), 56
N_skip () (py_alf.ana.Parameters method), 56

P

Parameters (class in py_alf.ana), 56
periodic_boundary_k () (py_alf Lattice method),
55
periodic_boundary_r () (py_alf Lattice method),
55
plot_k () (py_alf Lattice method), 55
plot_r () (py_alf Lattice method), 55
print_info_file () (py_alf.Simulation method),
51
py_alf.ana
module, 56
py_alf.utils
module, 60

R

r_to_n () (py_dalf Lattice method), 55

read_hist () (in module py_alf.ana), 58
read_latt () (in module py_alf.ana), 59
read_scal () (in module py_alf.ana), 59

69

pYALF Documentation

ReadObs (class in py_alf.ana), 56
rebin () (in module py_alf.ana), 60
rotate () (py_alf Lattice method), 55
run () (py_alf.Simulation method), 51

S

set_N_rebin () (py_alf.ana.Parameters method), 56
set_N_skip () (py_alf.ana.Parameters method), 56
show_obs () (in module py_alf.utils), 61
Simulation (class in py_alf), 50

slice () (py_alf.ana.ReadObs method), 57
symmetrize () (in module py_alf.ana), 60

W

write_nml () (py_alf.ana.Parameters method), 56

70

Index

	Abstract
	Contents
	Prerequisites and installation
	ALF prerequisites
	pyALF installation
	Development installation

	Setting ALF directory through environment variable
	Check setup
	Using Jupyter Notebooks
	Ready-to-use container image
	Some SSH port forwarding applications
	Use remote forwarding to circumvent restrictive firewalls
	Using Jupyter via SSH tunnel
	Using SSH in Visual Studio Code

	Usage
	Minimal example
	Compiling and running ALF
	Class ALF_source
	Class Simulation
	Specifying parameters
	Series of MPI runs
	Parallel Tempering
	Only preparing runs

	Postprocessing
	Basic analysis
	Get analysis results
	Scalar observables
	Example

	Equal-time correlation functions
	Time-displaced correlation functions

	Custom/Derived Observables
	Checking warmup and autocorrelation times
	Preparations
	Check warmup
	Check rebin

	Symmetrization of correlations on the lattice

	Command line tools
	alf_run
	alf_postprocess

	Reference
	Class ALF_source
	Class Simulation
	High-level analysis functions
	Class Lattice
	Low-level analysis functions
	Utility functions
	Command line tools
	minimal_ALF_run
	alf_run
	Named Arguments

	alf_postprocess
	Positional Arguments
	Named Arguments

	alf_bin_count
	Positional Arguments

	alf_show_obs
	Positional Arguments

	alf_del_bins
	Positional Arguments
	Named Arguments

	alf_test_branch
	Named Arguments

	Acknowledgments
	Bibliography
	Index

