Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

SU(2) Kondo and Anderson impurities.

The code can solve the following models
Anderson

H=i,jc^i,σTi,jσc^j,σ+R,R=1NImptR,Rd^R,σd^R,σ+R,σVRc^R,σd^R,σ+H.c.+U2R(n^Rd1)2+B2R,σσd^R,σd^R,σH = \sum_{i,j} \hat{c}^{\dagger}_{i,\sigma} T^{\sigma}_{i,j} \hat{c}^{\phantom\dagger}_{j,\sigma} + \sum_{R,R'=1}^{N_{Imp}} t_{R,R'} \hat{d}^{\dagger}_{R,\sigma}\hat{d}^{\phantom\dagger}_{R',\sigma} + \sum_{R,\sigma} V_R \hat{c}^{\dagger}_{R,\sigma} \hat{d}^{\phantom\dagger}_{R,\sigma} + \text{H.c.} + \frac{U}{2} \sum_{R}\left( \hat{n}^{d}_R - 1 \right)^2 + \frac{B}{2}\sum_{R,\sigma} \sigma \hat{d}^{\dagger}_{R,\sigma} \hat{d}^{\phantom\dagger}_{R,\sigma}

Kondo

H=i,jc^i,σTi,jσc^j,σ+R,R=1NImpJR,RS^RS^R+R,R=1NImpJR,RzS^RzS^Rz+RJRKS^Rc^Rσ2c^R+BRS^RzH = \sum_{i,j} \hat{c}^{\dagger}_{i,\sigma} T^{\sigma}_{i,j} \hat{c}^{\phantom\dagger}_{j,\sigma} + \sum_{R,R'=1}^{N_{Imp}} J_{R,R'} \vec{\hat{S}}_{R} \cdot \vec{\hat{S}}_{R'} + \sum_{R,R'=1}^{N_{Imp}} J^{z}_{R,R'} \hat{S}^{z}_{R} \hat{S}^{z}_{R'} + \sum_{R} J^{K}_{R} \vec{\hat{S}}_{R} \cdot \vec{\hat{c}}^{\dagger}_{R} \frac{\vec{\sigma}}{2} \vec{\hat{c}}^{\phantom\dagger}_{R} + B \sum_{R}\hat{S}^{z}_R

In the above the hopping is on a square lattice with the possibility of an altermagnetic term as discussed in this paper.

Name of Hamiltonian: Hamiltonian_Kondo_impurities_smod.F90

Here are the of things that are implemented:

Please do not hesitate to contact us if you need more features.

Usage of the code

Input

Here are examples for parameters.

Hopping and Hubbard U

&VAR_Kondo_impurities    !! Variables for the Kondo impurity  code
ham_T     = 1.d0            ! Hopping parameter !  Conduction.
ham_chem  = 0.d0            ! Chemical potential
Ham_T_alterm = 0.40         ! Alter-magnetic hopping just conduction.
d_wave_rep   ="DXY"         ! DXY or DX2Y2.Representation of d-wave alter-magnetic hopping. 
ham_U     = 2.d0            ! Hubbard
Ham_Imp_Kind = "Anderson"   ! Impurity kind "Anderson" or   "Kondo" 
Ham_N_imp = 6               ! # Spin 1/2  impurities 
/

Position and interaction of impurities

&VAR_impurities    !! Variables for the Kondo impurity  code
Imp_t(1,2)    =  -1.d0 
Imp_t(2,3)    =  -1.d0
Imp_t(3,4)    =  -1.d0
Imp_t(4,5)    =  -1.d0
Imp_t(5,6)    =  -1.d0
Imp_t(6,1)    =  -1.d0
Imp_Jz(1,2)  =  2.d0
Imp_Jz(1,3)  =  2.d0
Imp_Jz(2,3)  =  2.d0
Imp_V(1,1,1)  =  1.d0
Imp_V(2,1,2)  =  1.d0
Imp_V(3,1,3)  =  1.d0
/

The input parameters have different meanings for different model choice.

Anderson

Imp_V(n,R_x,R_y) Hybridization between impurity n and conduction electron c^Rx,Ry,σ\hat{c}_{R_x,R_y,\sigma}

Imp_t(n,m) Hopping between impurities n and m

Kondo

Imp_V(n,R_x,R_y) Kondo coupling between impurity n and conduction electron c^Rx,Ry,σ\hat{c}_{R_x,R_y,\sigma}

Imp_t(n,m) Heisenberg interaction between impurities n,m

Imp_Jz(n,m) J_z interaction between n,m impurities

Output

As it stands the program computes the local site dependent composite fermion Green function and the spin-spin correlations.

The position and numbering of the impurities is given by the Imp_V(n,Rx,Ry) input data.

SU(2) code (N_SUN = 2, N_FL = 1)

GreenPsi_n_Rx_Ry_tau contains the local composite fermion Green function ΨR(τ)ΨR(τ)\langle \Psi_{R}(\tau)\Psi^{\dagger}_{R}(\tau) \rangle

SpinZ_tau contains the dynamical spin-spin correlations S(n,m,τ)=S^nz(τ)S^mz(0)S(n,m,\tau) = \langle \hat{S}^z_n(\tau) \hat{S}^z_m(0) \rangle

U(1) code (N_SUN = 1, N_FL = 2)

In the presence of the altermagnetic term, SU(2) symmetry is broken down to U(1) and the files mentioned above acquire a spin index, up, down. Aside from this, the structure is the same.

Analysis

To analyze the data run the analysis code $ALF_DIR/Analysis/ana.out * (or ana_hdf5 if you are opting for HDF5 formatted output.)